Cho hai lực \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} \) cùng tác động vào một chất điểm \(M\). Biết cường độ lực \(\overrightarrow {{F_1}} \) bằng 150 N, cường độ lực \(\overrightarrow {{F_2}} \) bằng 100 N và góc tọa bởi hai lực \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} \) bằng \(120^\circ \). Gọi \(\overrightarrow F = \overrightarrow {{F_1}} + \overrightarrow {{F_2}} \) là lực tổng hợp tác động vào chất điểm \(M\). Tính cường độ của lực tổng hợp \(\overrightarrow F \) (theo đơn vị N) (làm tròn kết quả đến hàng đơn vị).

Quảng cáo
Trả lời:
Đáp án:
Có \({\left( {\overrightarrow {{F_1}} + \overrightarrow {{F_2}} } \right)^2} = {\overrightarrow {{F_1}} ^2} + 2\overrightarrow {{F_1}} \cdot \overrightarrow {{F_2}} + {\overrightarrow {{F_2}} ^2}\)\( = {\overrightarrow {{F_1}} ^2} + 2\left| {\overrightarrow {{F_1}} } \right| \cdot \left| {\overrightarrow {{F_2}} } \right| \cdot \cos \left( {\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} } \right) + {\overrightarrow {{F_2}} ^2}\)
\( = {150^2} + 2 \cdot 150 \cdot 100 \cdot \cos 120^\circ + {100^2}\)\( = 17500\).
Khi đó \(\left| {\overrightarrow F } \right| = \sqrt {17500} \approx 132\) (N).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Có \(\overrightarrow {MB} \) và \(\overrightarrow {MC} \) ngược hướng và \(MB = 4MC\) nên \(\overrightarrow {MB} = - 4\overrightarrow {MC} \). Suy ra \(\overrightarrow {BM} = \frac{4}{5}\overrightarrow {BC} \).
Khi đó \(\overrightarrow {AM} = \overrightarrow {AB} + \overrightarrow {BM} = \overrightarrow {AB} + \frac{4}{5}\overrightarrow {BC} = \overrightarrow {AB} + \frac{4}{5}\left( {\overrightarrow {AC} - \overrightarrow {AB} } \right)\)\( = \frac{1}{5}\overrightarrow {AB} + \frac{4}{5}\overrightarrow {AC} \).
Suy ra \(m = \frac{1}{5};n = \frac{4}{5}\). Vậy \(6m + n = 2\).
Lời giải
Theo đề ta có hệ phương trình \(\left\{ \begin{array}{l}{a^2} + {b^2} = {\left( {8 - a} \right)^2} + {\left( {4 - b} \right)^2}\\{a^2} + {b^2} = {\left( {7 - a} \right)^2} + {\left( {7 - b} \right)^2}\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}16a + 8b = 80\\14a + 14b = 98\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 3\\b = 4\end{array} \right.\).
Khi đó \(a + b = 7\).
Câu 3
A. \(\overrightarrow {AB} + \overrightarrow {AC} = \overrightarrow {AM} \).
B. \(\overrightarrow {AB} + \overrightarrow {AC} = 3\overrightarrow {AG} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
a) Góc giữa hai vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {AC} \) bằng \(30^\circ \).
b) \(\overrightarrow {AC} \cdot \overrightarrow {BD} = 0\).
c) \(\overrightarrow {AE} \cdot \overrightarrow {CD} = \overrightarrow {AD} \cdot \overrightarrow {CD} + \overrightarrow {DE} \cdot \overrightarrow {CD} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
a) Điểm \(M\) nằm giữa hai điểm \(A\) và \(B\).
b) \(\overrightarrow {AM} = \frac{3}{5}\overrightarrow {AB} \).
c) \(\overrightarrow {CM} = - \frac{2}{5}\overrightarrow {AC} + \frac{3}{5}\overrightarrow {AB} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.