Có 100 tấm thẻ được đánh số từ 1 đến 100. Lấy ngẫu nhiên 5 thẻ. Hãy xác định tính đúng – sai của các khẳng định sau:
Quảng cáo
Trả lời:
a) Đúng: Số phần tử của không gian mẫu \(n\left( \Omega \right) = C_{100}^5.\)
b) Sai: Từ 1 đến 100 có 50 số chẵn, suy ra số cách chọn 5 thẻ đều mang số chẵn là \(n\left( A \right) = C_{50}^5.\)
Vậy xác suất để 5 thẻ lấy ra đều mang số chẵn là \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{C_{50}^5}}{{C_{100}^5}} \approx 0,028\)
c) Đúng: Gọi B là biến cố: “5 thẻ lấy ra có 2 thẻ mang số chẵn và 3 thẻ mang số lẻ”.
Suy ra \(n\left( B \right) = C_{50}^2.C_{50}^3\). Vậy \(P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega \right)}} = \frac{{C_{50}^2.C_{50}^3}}{{C_{100}^5}} \approx 0,32\)
d) Đúng: Từ 1 đến 100 có 33 số chia hết cho 3, 67 số không chia hết cho 3.
Gọi C là biến cố: “Ít nhất một số ghi trên 5 thẻ được chọn chia hết cho 3”.
Ta có \(\overline C \): “Cả 5 số trên 5 thẻ được chọn đều không chia hết cho 3”.
Suy ra \(n\left( {\overline C } \right) = C_{67}^5\), do đó \(n\left( C \right) = C_{100}^5 - C_{67}^5\).
Vậy \(P\left( C \right) = \frac{{n\left( C \right)}}{{n\left( \Omega \right)}} = \frac{{C_{100}^5 - C_{67}^5}}{{C_{100}^5}} \approx 0,87\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(x\) (triệu đồng) là số tiền cần giảm giá bán mỗi máy tính xách tay (\(0 \le x < 3\)).
Gọi \(y\) là số máy tính bán được tăng thêm sau khi giảm giá bán.
Từ giả thiết ta có \(\frac{x}{{0,5}} = \frac{y}{5} \Leftrightarrow y = 10x\).
Suy ra, số máy tính bán được trong một tháng là \(20 + 10x\).
Khi đó, lợi nhuận thu được là: \(f\left( x \right) = \left( {3 - x} \right)\left( {20 + 10x} \right)\) với \(0 \le x < 3\).
Lợi nhuận thu được cao nhất khi hàm số \(f\left( x \right)\) đạt giá trị lớn nhất trên \(\left[ {0\,;\,3} \right)\)
Ta có \(f\left( x \right) = - 10{x^2} + 10x + 60 = - 10{\left( {x - \frac{1}{2}} \right)^2} + \frac{{125}}{2} \le \frac{{125}}{2},\forall x \in \left[ {0;3} \right)\).
Suy ra giá trị lớn nhất của \(f\left( x \right)\) trên \(\left[ {0\,;\,3} \right)\) bằng \(\frac{{125}}{2}\), đạt được khi \(x = \frac{1}{2}\).
Do đó, lợi nhuận thu được là cao nhất khi giảm giá bán mỗi máy tính \(0,5\) triệu đồng.
Vậy giá bán mỗi máy tính là \(17,5\) triệu đồng.
Câu 2
Lời giải
Mỗi cách chọn 3 học sinh để bầu vào chức lớp trưởng, lớp phó và bí thư là một chỉnh hợp chập 3 của 37 phần tử. Vậy số cách chọn là \(A_{37}^3 = 46620\) cách.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.