Trong mặt phẳng tọa độ \(Oxy\), xét phương trình \({x^2} + {y^2} - 2mx + 2\left( {m + 1} \right)y + 5 = 0\) (\(m\) là số thực). Có bao nhiêu giá trị nguyên của \(m\) để phương trình đã cho là phương trình đường tròn có bán kính không vượt quá \(2\sqrt 2 \).
Trong mặt phẳng tọa độ \(Oxy\), xét phương trình \({x^2} + {y^2} - 2mx + 2\left( {m + 1} \right)y + 5 = 0\) (\(m\) là số thực). Có bao nhiêu giá trị nguyên của \(m\) để phương trình đã cho là phương trình đường tròn có bán kính không vượt quá \(2\sqrt 2 \).
Quảng cáo
Trả lời:
Ta có: \({x^2} + {y^2} - 2mx + 2\left( {m + 1} \right)y + 5 = 0\left( 1 \right)\).
Phương trình \(\left( 1 \right)\) là phương trình đường tròn khi và chỉ khi \({m^2} + {\left( {m + 1} \right)^2} - 5 > 0 \Leftrightarrow {m^2} + m - 2 > 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m > 1}\\{m < - 2}\end{array}} \right.\left( * \right)\).
Khi đó đường tròn có bán kính \(R = \sqrt {{m^2} + {{\left( {m + 1} \right)}^2} - 5} = \sqrt {2{m^2} + 2m - 4} \).
Ta có \(R \le 2\sqrt 2 \Leftrightarrow \sqrt {2{m^2} + 2m - 4} \le 2\sqrt 2 \Leftrightarrow {m^2} + m - 6 \le 0 \Leftrightarrow - 3 \le m \le 2\).
Kết hợp điều kiện \(\left( * \right)\) ta được \(m \in \left[ { - 3; - 2} \right) \cup \left( {1;2} \right]\).
Do \(m \in \mathbb{Z}\) nên \(m \in \left\{ { - 3;2} \right\}\). Vậy có \(2\) giá trị nguyên \(m\) thỏa mãn bài toán.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
a) Sai: Chỉ có đúng một màu (màu vàng) là: \(C_7^6 = 7\)cách.
b) Sai: Chọn 6 bông bất kì từ 15 bông có: \(C_{15}^6 = 5005\) cách.
Chọn hai màu hồng, xanh có \(C_3^2.C_5^4 + C_3^3.C_5^3 = 25\) cách.
Chọn hai màu hồng, vàng có \(C_3^3.C_7^3 + C_3^2.C_7^4 + C_3^1.C_7^5 = 203\) cách.
Chọn hai màu xanh, vàng có \(C_5^5.C_7^1 + C_5^4.C_7^2 + C_5^3.C_7^3 + C_5^2.C_7^4 + C_5^1.C_7^5 = 917\)cách.
Chỉ có đúng hai màu là \[25 + 203 + 917 = 1145\]cách.
c) Sai: Ít nhất hai màu là\[5005 - 7 = 4998\].
d) Sai: Đủ cả ba màu là \(5005 - 7 - 1145 = 3853\).
Câu 2
Lời giải
Mỗi cách chọn 3 học sinh để bầu vào chức lớp trưởng, lớp phó và bí thư là một chỉnh hợp chập 3 của 37 phần tử. Vậy số cách chọn là \(A_{37}^3 = 46620\) cách.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.