Trong mặt phẳng tọa độ \(Oxy\), xét phương trình \({x^2} + {y^2} - 2mx + 2\left( {m + 1} \right)y + 5 = 0\) (\(m\) là số thực). Có bao nhiêu giá trị nguyên của \(m\) để phương trình đã cho là phương trình đường tròn có bán kính không vượt quá \(2\sqrt 2 \).
Trong mặt phẳng tọa độ \(Oxy\), xét phương trình \({x^2} + {y^2} - 2mx + 2\left( {m + 1} \right)y + 5 = 0\) (\(m\) là số thực). Có bao nhiêu giá trị nguyên của \(m\) để phương trình đã cho là phương trình đường tròn có bán kính không vượt quá \(2\sqrt 2 \).
Quảng cáo
Trả lời:
Ta có: \({x^2} + {y^2} - 2mx + 2\left( {m + 1} \right)y + 5 = 0\left( 1 \right)\).
Phương trình \(\left( 1 \right)\) là phương trình đường tròn khi và chỉ khi \({m^2} + {\left( {m + 1} \right)^2} - 5 > 0 \Leftrightarrow {m^2} + m - 2 > 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m > 1}\\{m < - 2}\end{array}} \right.\left( * \right)\).
Khi đó đường tròn có bán kính \(R = \sqrt {{m^2} + {{\left( {m + 1} \right)}^2} - 5} = \sqrt {2{m^2} + 2m - 4} \).
Ta có \(R \le 2\sqrt 2 \Leftrightarrow \sqrt {2{m^2} + 2m - 4} \le 2\sqrt 2 \Leftrightarrow {m^2} + m - 6 \le 0 \Leftrightarrow - 3 \le m \le 2\).
Kết hợp điều kiện \(\left( * \right)\) ta được \(m \in \left[ { - 3; - 2} \right) \cup \left( {1;2} \right]\).
Do \(m \in \mathbb{Z}\) nên \(m \in \left\{ { - 3;2} \right\}\). Vậy có \(2\) giá trị nguyên \(m\) thỏa mãn bài toán.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(x\) (triệu đồng) là số tiền cần giảm giá bán mỗi máy tính xách tay (\(0 \le x < 3\)).
Gọi \(y\) là số máy tính bán được tăng thêm sau khi giảm giá bán.
Từ giả thiết ta có \(\frac{x}{{0,5}} = \frac{y}{5} \Leftrightarrow y = 10x\).
Suy ra, số máy tính bán được trong một tháng là \(20 + 10x\).
Khi đó, lợi nhuận thu được là: \(f\left( x \right) = \left( {3 - x} \right)\left( {20 + 10x} \right)\) với \(0 \le x < 3\).
Lợi nhuận thu được cao nhất khi hàm số \(f\left( x \right)\) đạt giá trị lớn nhất trên \(\left[ {0\,;\,3} \right)\)
Ta có \(f\left( x \right) = - 10{x^2} + 10x + 60 = - 10{\left( {x - \frac{1}{2}} \right)^2} + \frac{{125}}{2} \le \frac{{125}}{2},\forall x \in \left[ {0;3} \right)\).
Suy ra giá trị lớn nhất của \(f\left( x \right)\) trên \(\left[ {0\,;\,3} \right)\) bằng \(\frac{{125}}{2}\), đạt được khi \(x = \frac{1}{2}\).
Do đó, lợi nhuận thu được là cao nhất khi giảm giá bán mỗi máy tính \(0,5\) triệu đồng.
Vậy giá bán mỗi máy tính là \(17,5\) triệu đồng.
Câu 2
Lời giải
Mỗi cách chọn 3 học sinh để bầu vào chức lớp trưởng, lớp phó và bí thư là một chỉnh hợp chập 3 của 37 phần tử. Vậy số cách chọn là \(A_{37}^3 = 46620\) cách.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.