Gọi \(S\) là tập các số tự nhiên có bốn chữ số khác nhau được lập từ tập \(E = \left\{ {1;2;3;4;5} \right\}\). Chọn ngẫu nhiên một số từ tập \(S\). Xác xuất để số được chọn là một số chẵn là \(\frac{a}{b}\) với \(\frac{a}{b}\) là phân số tối giản và \(a,\,b \in \mathbb{Z}\). Khi đó \(T = a + b\) bằng bao nhiêu?
Gọi \(S\) là tập các số tự nhiên có bốn chữ số khác nhau được lập từ tập \(E = \left\{ {1;2;3;4;5} \right\}\). Chọn ngẫu nhiên một số từ tập \(S\). Xác xuất để số được chọn là một số chẵn là \(\frac{a}{b}\) với \(\frac{a}{b}\) là phân số tối giản và \(a,\,b \in \mathbb{Z}\). Khi đó \(T = a + b\) bằng bao nhiêu?
Quảng cáo
Trả lời:
Gọi \(A\) là biến cố “số được chọn là một số chẵn”
Số các số tự nhiên có bốn chữ số khác nhau là \(A_5^4 = 120\)
Số phần tử của không gian mẫu \(n\left( \Omega \right) = C_{120}^1 = 120\)
Số các số tự nhiên chẵn có bốn chữ số khác nhau \(2A_4^3 = 48\)
Số kết quả thuận lợi của biến cố \(A\) là \(n\left( A \right) = C_{48}^1 = 48\)
Vậy xác xuất để số được chọn là một số chẵn là:
\(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{48}}{{120}} = \frac{2}{5} \Rightarrow \left\{ \begin{array}{l}a = 2\\b = 5\end{array} \right. \Rightarrow T = a + b = 2 + 5 = 7\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Mỗi cách chọn 3 học sinh để bầu vào chức lớp trưởng, lớp phó và bí thư là một chỉnh hợp chập 3 của 37 phần tử. Vậy số cách chọn là \(A_{37}^3 = 46620\) cách.
Lời giải
Điều kiện: \[x \ne 0;x \ne - 2\].
Ta có \[\frac{{x - 1}}{x} - \frac{6}{{x + 2}} + 2 \le 0 \Leftrightarrow \frac{{\left( {x - 1} \right)\left( {x + 2} \right) - 6x + 2x\left( {x + 2} \right)}}{{x\left( {x + 2} \right)}} \le 0 \Leftrightarrow \frac{{3{x^2} - x - 2}}{{{x^2} + 2x}} \le 0\].
Ta có bảng xét dấu sau
![Số nghiệm nguyên của bất phương trình \[\frac{{x - 1}}{x} - \frac{6}{{x + 2}} + 2 \le 0\] là (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/12/6-1766035686.png)
Dựa vào bảng xét dấu ta có tập nghiệm của bất phương trình là \[S = \left( { - 2; - \frac{2}{3}} \right] \cup \left( {0;1} \right]\].
Kết hợp giả thiết ta có các nghiệm nguyên thỏa mãn là: \[\left\{ { - 1;1} \right\}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.