Câu hỏi:

18/12/2025 7 Lưu

Một hộp có \(15\) quả cầu trắng, \(5\) quả cầu đen. Xét phép thử chọn ngẫu nhiên \(3\) quả cầu
Hãy xác định định đúng – sai của các khẳng định sau:

a) Không gian mẫu của phép thử là: \(1140\)
Đúng
Sai
b) Xác suất để chọn được 2 quả cầu trắng là: \(\frac{7}{{76}}\)
Đúng
Sai
c) Xác suất để chọn được ít nhất một quả cầu đen là: \(\frac{{137}}{{228}}\)
Đúng
Sai
d) Xác suất để chọn được 3 quả cầu thuộc hai loại khác nhau là: \(\frac{{35}}{{76}}\)
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng: Không gian mẫu của phép thử \(n\left( \Omega  \right) = C_{20}^3 = 1140\).

b) Sai: Gọi \(A\)là biến cố chọn được hai quả cầu trắng suy ra chọn 2 quả trắng, 1 quả đen.

\( \Rightarrow n\left( A \right) = C_{15}^2.C_5^1 = 525\)

Xác suất của biến cố \(A\) là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{{525}}{{1140}} = \frac{{35}}{{76}}\).

c) Đúng: Gọi \(B\)là biến cố chọn được ít nhất một quả cầu đen suy ra chọn \(\overline B \) là biến cố không chọn được quả đen nào, tức là chọn được 3 quả trắng\( \Rightarrow n\left( {\overline B } \right) = C_{15}^3 = 455\)

Xác suất của biến cố \(\overline B \) là: \(P\left( {\overline B } \right) = \frac{{n\left( {\overline B } \right)}}{{n\left( \Omega  \right)}} = \frac{{455}}{{1140}} = \frac{{91}}{{228}}\).

Xác suất của biến cố \(B\) là: \(P\left( B \right) = 1 - P\left( {\overline B } \right) = 1 - \frac{{91}}{{228}} = \frac{{137}}{{228}}\).

d) Sai: Gọi \(C\)là biến cố chọn được ba quả cầu thuộc hai loại khác nhau.

Trường hợp 1: Chọn \(1\) quả trắng, \(2\) quả đen\( \Rightarrow \)có: \(C_{15}^1.C_5^2 = 150\) cách.

Trường hợp 2: Chọn \(2\) quả trắng, \(1\) quả đen\( \Rightarrow \)có: \(C_{15}^2.C_5^1 = 525\) cách.

\( \Rightarrow n\left( C \right) = 150 + 525 = 675\)cách.

Xác suất của biến cố \(C\) là: \(P\left( C \right) = \frac{{n\left( C \right)}}{{n\left( \Omega  \right)}} = \frac{{675}}{{1140}} = \frac{{45}}{{76}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Số lượng dưa bán ra khi giảm giá là \(40\) trái.
Đúng
Sai
b) Lợi nhuận trên mỗi trái dưa sau khi giảm giá \(30.000\) đồng.
Đúng
Sai
c) Lợi nhuận bán dưa mỗi ngày được biểu thị bằng tam thức \(f\left( x \right) = - 2{x^2} + 20x + 1200\)
Đúng
Sai
d) Giá bán mỗi quả dưa \(45.000\) đồng thì cửa hàng thu được lợi nhuận mỗi ngày cao nhất.
Đúng
Sai

Lời giải

Gọi \(x\) (nghìn đồng) là số tiền giảm giá. Ta có \(0 < x < 30\).

Số lượng dưa bán ra khi giảm giá: \(40 + 2x\) (trái).

Lợi nhuận trên mỗi trái dưa sau khi giảm giá: \(30 - x\) (nghìn đồng).

Lợi nhuận bán dưa mỗi ngày là: \(\left( {40 + 2x} \right)\left( {30 - x} \right) =  - 2{x^2} + 20x + 1200\) (nghìn đồng).

Xét hàm số \(f\left( x \right) =  - 2{x^2} + 20x + 1200\) trên khoảng \(\left( {0;30} \right)\).

Do hàm số có hệ số \(a =  - 2 < 0\) nên hàm số đạt giá trị lớn nhất tại \(x =  - \frac{b}{{2a}} = 5\).

Vậy cửa hàng cần giảm giá 5000 đồng cho mỗi quả để đạt được lợi nhuận cao nhất.

Vậy giá bán mỗi quả dưa cần tìm là 45000 đồng.

a) Sai: Số lượng dưa bán ra khi giảm giá là \(50\) trái.

b) Sai: Lợi nhuận trên mỗi trái dưa sau khi giảm giá \(25.000\) đồng.

c) Đúng: Lợi nhuận bán dưa mỗi ngày được biểu thị bằng tam thức \(f\left( x \right) =  - 2{x^2} + 20x + 1200\)

d) Đúng: Giá bán mỗi quả dưa \(45.000\) đồng thì cửa hàng thu được lợi nhuận mỗi ngày cao nhất.

Lời giải

Bất phương trình \({x^2} - \left( {m + 2} \right)x + 8m + 1 \le 0\) vô nghiệm \( \Leftrightarrow {x^2} - \left( {m + 2} \right)x + 8m + 1 > 0,\forall x \in \mathbb{R}\).

Điều kiện: \(\Delta  < 0 \Leftrightarrow {\left( {m + 2} \right)^2} - 4\left( {8m + 1} \right) > 0 \Leftrightarrow {m^2} - 28m > 0 \Leftrightarrow \left[ \begin{array}{l}m < 0\\m > 28\end{array} \right.\).

Kết hợp điều kiện  nên có \(2\) giá trị thỏa mãn.

Câu 4

A. \[3x - 1 = 0\].        
B. \[2x + 1 = 0\].     
C. \[2x - 1 = 0\].                             
D. \[2x + 3 = 0\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP