Câu hỏi:

18/12/2025 10 Lưu

Cho đường thẳng \[{\Delta _m}:\left( {m - 2} \right)x + \left( {m + 1} \right)y - 5m + 1 = 0\] với \[m\] là tham số, và điểm \[A\left( { - 3;9} \right)\]. Giả sử \[m = \frac{a}{b}\] (là phân số tối giản) để khoảng cách từ \[A\] đến đường thẳng \[{\Delta _m}\] là lớn nhất. Khi đó hãy tính giá trị của biểu thức \[S = 2a - b.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \({\Delta _m}:\left( {m - 2} \right)x + \left( {m + 1} \right)y - 5m + 1 = 0 \Leftrightarrow m\left( {x + y - 5} \right) + \left( { - 2x + y + 1} \right) = 0\)

Khi đó, \({\Delta _m}\) luôn đi qua điểm cố định \(M\left( {2;3} \right)\).

Gọi \(d = d\left( {A,{\Delta _m}} \right) = AH,H \in {\Delta _m}\) \( \Rightarrow d \le AM\).

\( \Rightarrow d\) lớn nhất khi \(H \equiv M\) hay \(M\) là hình chiếu của \(A\) trên \(\Delta \).

Ta có \(\overrightarrow {AM} \left( {5; - 6} \right)\) và \({\Delta _m}\) có vectơ chỉ phương \(\overrightarrow u \left( {m + 1;2 - m} \right)\).

Đường thẳng \(AM \bot {\Delta _m}\) \( \Leftrightarrow \overrightarrow {AM} .\overrightarrow u  = 0\)

\( \Leftrightarrow 5\left( {m + 1} \right) - 6\left( {2 - m} \right) = 0 \Leftrightarrow 11m - 7 = 0 \Leftrightarrow m = \frac{7}{{11}} \Rightarrow S = 2a - b = 2.7 - 11 = 3\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Số lượng dưa bán ra khi giảm giá là \(40\) trái.
Đúng
Sai
b) Lợi nhuận trên mỗi trái dưa sau khi giảm giá \(30.000\) đồng.
Đúng
Sai
c) Lợi nhuận bán dưa mỗi ngày được biểu thị bằng tam thức \(f\left( x \right) = - 2{x^2} + 20x + 1200\)
Đúng
Sai
d) Giá bán mỗi quả dưa \(45.000\) đồng thì cửa hàng thu được lợi nhuận mỗi ngày cao nhất.
Đúng
Sai

Lời giải

Gọi \(x\) (nghìn đồng) là số tiền giảm giá. Ta có \(0 < x < 30\).

Số lượng dưa bán ra khi giảm giá: \(40 + 2x\) (trái).

Lợi nhuận trên mỗi trái dưa sau khi giảm giá: \(30 - x\) (nghìn đồng).

Lợi nhuận bán dưa mỗi ngày là: \(\left( {40 + 2x} \right)\left( {30 - x} \right) =  - 2{x^2} + 20x + 1200\) (nghìn đồng).

Xét hàm số \(f\left( x \right) =  - 2{x^2} + 20x + 1200\) trên khoảng \(\left( {0;30} \right)\).

Do hàm số có hệ số \(a =  - 2 < 0\) nên hàm số đạt giá trị lớn nhất tại \(x =  - \frac{b}{{2a}} = 5\).

Vậy cửa hàng cần giảm giá 5000 đồng cho mỗi quả để đạt được lợi nhuận cao nhất.

Vậy giá bán mỗi quả dưa cần tìm là 45000 đồng.

a) Sai: Số lượng dưa bán ra khi giảm giá là \(50\) trái.

b) Sai: Lợi nhuận trên mỗi trái dưa sau khi giảm giá \(25.000\) đồng.

c) Đúng: Lợi nhuận bán dưa mỗi ngày được biểu thị bằng tam thức \(f\left( x \right) =  - 2{x^2} + 20x + 1200\)

d) Đúng: Giá bán mỗi quả dưa \(45.000\) đồng thì cửa hàng thu được lợi nhuận mỗi ngày cao nhất.

Lời giải

Bất phương trình \({x^2} - \left( {m + 2} \right)x + 8m + 1 \le 0\) vô nghiệm \( \Leftrightarrow {x^2} - \left( {m + 2} \right)x + 8m + 1 > 0,\forall x \in \mathbb{R}\).

Điều kiện: \(\Delta  < 0 \Leftrightarrow {\left( {m + 2} \right)^2} - 4\left( {8m + 1} \right) > 0 \Leftrightarrow {m^2} - 28m > 0 \Leftrightarrow \left[ \begin{array}{l}m < 0\\m > 28\end{array} \right.\).

Kết hợp điều kiện  nên có \(2\) giá trị thỏa mãn.

Câu 4

A. \[3x - 1 = 0\].        
B. \[2x + 1 = 0\].     
C. \[2x - 1 = 0\].                             
D. \[2x + 3 = 0\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP