Câu hỏi:

18/12/2025 6 Lưu

Trên một giá sách có \(4\) quyển sách Toán, \(5\) quyển sách Vật lí và \(6\) quyển sách Hóa học. Các quyển sách đôi một khác nhau.

a) Có \(15\) cách lấy một quyển sách tùy ỳ từ giá sách.
Đúng
Sai
b) Có \(9\) cách lấy một quyển sách Toán hoặc Vật lý từ giá sách.
Đúng
Sai
c) Có \(10\) cách lấy hai quyển sách gồm Toán và Hóa học từ giá sách.
Đúng
Sai
d) Có \(120\) cách lấy ba quyển sách có đủ ba môn học từ giá sách.
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng: Trên giá sách có \(4 + 5 + 6 = 15\) quyển sách.

Lấy \(1\) quyển tùy ý từ \(15\) quyển nên có 15 cách lấy.

b) Đúng: Lấy một quyển sách Toán hoặc Vật lý từ giá sách.

Lấy một quyển Toán: có 4 cách lấy.

Lấy một quyển Vật lý: có 5 cách lấy

Việc lấy sách được hoàn thành bởi một trong hai hành động trên nên theo quy tắc cộng có \(4 + 5 = 9\) cách lấy.

c) Sai: Lấy hai quyển sách gồm Toán và Hóa học từ giá sách.

Lấy một quyển Toán: có \(4\) cách lấy.

Lấy một quyển Hóa học: có 6 cách lấy.

Việc lấy sách được hoàn thành bởi liên tiếp hai hành động trên nên theo quy tắc nhân có \(4.{\rm{6}} = 24\) cách lấy.

d) Đúng: Lấy ba quyển sách có đủ ba môn học từ giá sách.

Lấy một quyển Toán: có \(4\) cách lấy.

Lấy một quyển Vật lý: có 5 cách lấy

Lấy một quyển Hóa học: có 6 cách lấy.

Việc lấy sách được hoàn thành bởi liên tiếp ba hành động trên nên theo quy tắc nhân có \(4.5.{\rm{6}} = 120\) cách lấy.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: \(f\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = m\\x = m + 3\end{array} \right.\).

\(f\left( x \right) < 0 \Leftrightarrow x \in \left( {m;m + 3} \right)\)

Do đó: \(f\left( x \right) < 0,\forall x \in \left( { - 1;0} \right)\) \( \Leftrightarrow \) \(\left( { - 1;0} \right) \subset \left( {m;m + 3} \right)\) \( \Leftrightarrow \) \(m \le  - 1 < 0 \le m + 3\)\( \Leftrightarrow \left\{ \begin{array}{l}m \le  - 1\\0 \le m + 3\end{array} \right.\).\( \Leftrightarrow \left\{ \begin{array}{l}m \le  - 1\\ - 3 \le m\end{array} \right. \Leftrightarrow  - 3 \le m \le  - 1\)

Vậy \( - 3 \le m \le  - 1\)\( \Rightarrow m \in \left\{ { - 3;\, - 2;\, - 1} \right\}\) nên có \(3\) giá trị nguyên thỏa mãn.

Lời giải

Chọn ngẫu nhiên \(3\) đỉnh từ \(32\) đỉnh ta có \(n\left( \Omega  \right) = C_{32}^3 = 4960\).

Đa giác đều có \(32\) đỉnh sẽ có \(16\) đường chéo đi qua tâm của đa giác.

Mà cứ \(2\) đường chéo sẽ tạo thành \(1\) hình chữ nhật. Cứ 1 hình chữ nhật lại tạo thành \(4\) tam giác vuông. Do đó, số tam giác vuông được tạo thành là \(4C_{16}^2 = 480\).

Mặt khác, trong số \(C_{16}^2\) hình chữ nhật lại có \(8\) hình vuông. Suy ra, số tam giác vuông cân là \(4 \cdot 8 = 32\).

Gọi \(X\) là biến cố “Chọn được một tam giác vuông, không cân”\( \Rightarrow n\left( X \right) = 480 - 32 = 448\).

Xác suất của biến cố \(X\) là:

\(P\left( X \right) = \frac{{n\left( X \right)}}{{n\left( \Omega  \right)}} = \frac{{448}}{{4960}} = \frac{{14}}{{155}} \Rightarrow \left\{ \begin{array}{l}a = 14\\b = 155\end{array} \right. \Rightarrow T = b - 3a = 155 - 3.14 = 113\).

Câu 3

A. \(\overline B \) là biến cố: “Số được chọn chia hết cho \(6\).
B. \(\overline B \) là biến cố: “Số được chọn không chia hết cho \(6\).
C. \(\overline B \) là biến cố: “Số được chọn chia hết cho \(3\).
D. \(\overline B \) là biến cố: “Số được chọn không chia hết cho \(3\)”.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[ - x + 2y + 7 = 0\].                              
B. \[2x + y + 8 = 0\].                       
C. \[x - 2y - 9 = 0\]. 
D. \[x - 2y + 9 = 0\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

a) Tập nghiệm của bất phương trình \[f\left( x \right) < 0\]\[\mathbb{R}\backslash \left( {1;3} \right)\].
Đúng
Sai
b) Tập nghiệm của bất phương trình \[f\left( x \right) \ge 0\]\[S = \left[ {1;3} \right]\].
Đúng
Sai
c) Nghiệm \[x = 2\] là một nghiệm của bất phương trình \[f\left( x \right) > 0\].
Đúng
Sai
d) Bất phương trình \[f\left( x \right) < 2\] có tập nghiệm \[S = \mathbb{R}\].
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP