Cho tam thức bậc hai \(f\left( x \right) = {x^2} - \left( {2m + 3} \right)x + {m^2} + 3m\), \(m\) là tham số. Có bao nhiêu giá trị nguyên của tham số \(m\) để \(f\left( x \right) < 0,\forall x \in \left( { - 1;0} \right)\).
Cho tam thức bậc hai \(f\left( x \right) = {x^2} - \left( {2m + 3} \right)x + {m^2} + 3m\), \(m\) là tham số. Có bao nhiêu giá trị nguyên của tham số \(m\) để \(f\left( x \right) < 0,\forall x \in \left( { - 1;0} \right)\).
Quảng cáo
Trả lời:
Ta có: \(f\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = m\\x = m + 3\end{array} \right.\).
\(f\left( x \right) < 0 \Leftrightarrow x \in \left( {m;m + 3} \right)\)
Do đó: \(f\left( x \right) < 0,\forall x \in \left( { - 1;0} \right)\) \( \Leftrightarrow \) \(\left( { - 1;0} \right) \subset \left( {m;m + 3} \right)\) \( \Leftrightarrow \) \(m \le - 1 < 0 \le m + 3\)\( \Leftrightarrow \left\{ \begin{array}{l}m \le - 1\\0 \le m + 3\end{array} \right.\).\( \Leftrightarrow \left\{ \begin{array}{l}m \le - 1\\ - 3 \le m\end{array} \right. \Leftrightarrow - 3 \le m \le - 1\)
Vậy \( - 3 \le m \le - 1\)\( \Rightarrow m \in \left\{ { - 3;\, - 2;\, - 1} \right\}\) nên có \(3\) giá trị nguyên thỏa mãn.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn ngẫu nhiên \(3\) đỉnh từ \(32\) đỉnh ta có \(n\left( \Omega \right) = C_{32}^3 = 4960\).
Đa giác đều có \(32\) đỉnh sẽ có \(16\) đường chéo đi qua tâm của đa giác.
Mà cứ \(2\) đường chéo sẽ tạo thành \(1\) hình chữ nhật. Cứ 1 hình chữ nhật lại tạo thành \(4\) tam giác vuông. Do đó, số tam giác vuông được tạo thành là \(4C_{16}^2 = 480\).
Mặt khác, trong số \(C_{16}^2\) hình chữ nhật lại có \(8\) hình vuông. Suy ra, số tam giác vuông cân là \(4 \cdot 8 = 32\).
Gọi \(X\) là biến cố “Chọn được một tam giác vuông, không cân”\( \Rightarrow n\left( X \right) = 480 - 32 = 448\).
Xác suất của biến cố \(X\) là:
\(P\left( X \right) = \frac{{n\left( X \right)}}{{n\left( \Omega \right)}} = \frac{{448}}{{4960}} = \frac{{14}}{{155}} \Rightarrow \left\{ \begin{array}{l}a = 14\\b = 155\end{array} \right. \Rightarrow T = b - 3a = 155 - 3.14 = 113\).
Câu 2
Lời giải
Biến cố đối của biến cố \(B\) là \(\overline B \): “Số được chọn không hết cho \(3\)”.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
