Một đa giác đều có \(32\) đỉnh. Chọn ngẫu nhiên \(3\) đỉnh từ \(32\) đỉnh của đa giác đó. Xác suất để \(3\) đỉnh được chọn là \(3\) đỉnh của một tam giác vuông nhưng không cân là \(\frac{a}{b}\) với \(\frac{a}{b}\) là phân số tối giản và \(a,b \in \mathbb{Z}\). Tính giá trị biểu thức \(T = b - 3a\)
Quảng cáo
Trả lời:
Chọn ngẫu nhiên \(3\) đỉnh từ \(32\) đỉnh ta có \(n\left( \Omega \right) = C_{32}^3 = 4960\).
Đa giác đều có \(32\) đỉnh sẽ có \(16\) đường chéo đi qua tâm của đa giác.
Mà cứ \(2\) đường chéo sẽ tạo thành \(1\) hình chữ nhật. Cứ 1 hình chữ nhật lại tạo thành \(4\) tam giác vuông. Do đó, số tam giác vuông được tạo thành là \(4C_{16}^2 = 480\).
Mặt khác, trong số \(C_{16}^2\) hình chữ nhật lại có \(8\) hình vuông. Suy ra, số tam giác vuông cân là \(4 \cdot 8 = 32\).
Gọi \(X\) là biến cố “Chọn được một tam giác vuông, không cân”\( \Rightarrow n\left( X \right) = 480 - 32 = 448\).
Xác suất của biến cố \(X\) là:
\(P\left( X \right) = \frac{{n\left( X \right)}}{{n\left( \Omega \right)}} = \frac{{448}}{{4960}} = \frac{{14}}{{155}} \Rightarrow \left\{ \begin{array}{l}a = 14\\b = 155\end{array} \right. \Rightarrow T = b - 3a = 155 - 3.14 = 113\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: \(f\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = m\\x = m + 3\end{array} \right.\).
\(f\left( x \right) < 0 \Leftrightarrow x \in \left( {m;m + 3} \right)\)
Do đó: \(f\left( x \right) < 0,\forall x \in \left( { - 1;0} \right)\) \( \Leftrightarrow \) \(\left( { - 1;0} \right) \subset \left( {m;m + 3} \right)\) \( \Leftrightarrow \) \(m \le - 1 < 0 \le m + 3\)\( \Leftrightarrow \left\{ \begin{array}{l}m \le - 1\\0 \le m + 3\end{array} \right.\).\( \Leftrightarrow \left\{ \begin{array}{l}m \le - 1\\ - 3 \le m\end{array} \right. \Leftrightarrow - 3 \le m \le - 1\)
Vậy \( - 3 \le m \le - 1\)\( \Rightarrow m \in \left\{ { - 3;\, - 2;\, - 1} \right\}\) nên có \(3\) giá trị nguyên thỏa mãn.
Lời giải

Đường tròn \(\left( C \right)\) ngoại tiếp tam giác \(ABC\)có phương trình là: \({\left( {x - 1} \right)^2} + {y^2} = 25\).
Tứ giác\(BCHK\) nội tiếp đường tròn đường kính \(BC\) (vì \(\widehat {BHC} = \widehat {BKC} = {90^0}\)).
Dựng tiếp tuyến của đường tròn \(\left( C \right)\) tại \(A.\) Ta có \[\widehat {CAx} = \widehat {CBA} = \] sđ \(\left( 1 \right)\)
Mặt khác: \[\widehat {CBA} = \widehat {AHK}\] (Vì tứ giác \(BCHK\) nội tiếp) \(\left( 2 \right)\)
Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) suy ra \[\widehat {CAx} = \widehat {AHK}\]. Vậy \[HK//Ax\], nên \[HK \bot AI\].
Đường thẳng \(AI\) đi qua \(I\) và nhận \(\overrightarrow {HK} \) làm véc tơ pháp tuyến nên có phương trình là:
\(3\left( {x - 1} \right) + 4y = 0 \Leftrightarrow 3x + 4y - 3 = 0\).
Tọa độ điểm \(A\) là nghiệm của hệ \(\left\{ \begin{array}{l}3x + 4y - 3 = 0\\{\left( {x - 1} \right)^2} + {y^2} = 25\end{array} \right. \Rightarrow A\left( { - 3;3} \right)\) (vì \(A\)có tung độ dương).
Đường thẳng \(AB\) đi qua \(A\) và \(K\) nên có phương trình: \(2x + y + 3 = 0\).
Tọa độ điểm \(B\) là nghiệm của hệ \[\left\{ \begin{array}{l}3x + y + 3 = 0\\{\left( {x - 1} \right)^2} + {y^2} = 25\end{array} \right. \Rightarrow B\left( {1; - 5} \right)\] (vì \(B\) khác \(A\)).
Đường thẳng \(AC\)đi qua \(A\) và \(H\) nên có phương trình: \(x + 3y - 6 = 0\).
Tọa độ điểm \(C\) là nghiệm của hệ \[\left\{ \begin{array}{l}x + 3y - 6 = 0\\{\left( {x - 1} \right)^2} + {y^2} = 25\end{array} \right. \Rightarrow C\left( {6;0} \right)\] (vì \(C\) khác\(A\)).
Vậy đường tròn ngoại tiếp tứ giác BCHK có đường kính \(BC\) bằng \(\frac{{25}}{2} = 12,5\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
