Câu hỏi:

18/12/2025 2 Lưu

Bộ bài tú lơ khơ có 52 quân bài. Rút ngẫu nhiên ra 4 quân bài. Hãy xác định tính đúng sai của các mệnh đề sau:

a) Xác suất của biến cố \(A\): “Rút ra được tứ quý Át” là \(\frac{1}{{52}}\)
Đúng
Sai
b) Xác suất của biến cố \(B\): “Rút ra được hai quân Át, hai quân \(K\)” là \[\frac{{36}}{{270725}}\]
Đúng
Sai
c) Xác suất của biến cố \(C\): “Rút ra được ít nhất một quân Át” là \(\frac{{38916}}{{54145}}\)
Đúng
Sai
d) Xác suất của biến cố \(D\): “Rút ra được 4 quân trong đó có đúng 2 quân ở cùng một tứ quý và hai quân còn lại ở hai tứ quý khác nhau” là \[\frac{{82368}}{{270725}}\]
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Sai: Ta có số cách chọn ngẫu nhiên 4 quân bài là: \(C_{52}^4 = 270725\).

Suy ra số phần tử của không gian mẫu là: \(n\left( \Omega  \right) = 270725\).

Vì bộ bài chỉ có 1 tứ quý Át nên số phần tử của biến cố \[A\] là: \(n\left( A \right) = 1\).

Vậy xác suất của biến cố \(A\) là \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{1}{{270725}}\].

b) Đúng: Ta có số cách chọn ngẫu nhiên 4 quân bài là: \(C_{52}^4 = 270725\).

Suy ra số phần tử của không gian mẫu là: \(n\left( \Omega  \right) = 270725\).

Có \(C_4^2\) cách rút được hai quân Át, Có \(C_4^2\) cách rút được hai quân \(K\) nên số phần tử của biến cố \[B\] là: \(n\left( B \right) = C_4^2.C_4^2 = 36\).

Vậy xác suất của biến cố \(B\) là \[P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega  \right)}} = \frac{{36}}{{270725}}\].

c) Sai: Ta có số cách chọn ngẫu nhiên 4 quân bài là: \(C_{52}^4 = 270725\).

Suy ra số phần tử của không gian mẫu là: \(n\left( \Omega  \right) = 270725\).

Biến cố \(\overline C \): “ Rút không được quân Át nào”.

Có \(C_{48}^4\) cách rút bốn quân không cố quân Át nào nên số phần tử của biến cố \[\overline C \] là: \(n\left( {\overline C } \right) = C_{48}^4 = 194580\).

Vậy xác suất của biến cố \(C\) là \[P\left( C \right) = 1 - P\left( {\overline C } \right) = 1 - \frac{{n\left( {\overline C } \right)}}{{n\left( \Omega  \right)}} = 1 - \frac{{194580}}{{270725}} = 1 - \frac{{38916}}{{54145}} = \frac{{15229}}{{54145}}\].

d) Đúng: Ta có số cách chọn ngẫu nhiên 4 quân bài là: \(C_{52}^4 = 270725\).

Suy ra số phần tử của không gian mẫu là: \(n\left( \Omega  \right) = 270725\).

Có \(C_{13}^1\) cách chọn ra 1 tứ quý. Ứng với tứ quý này có \(C_4^2\) cách chọn ra 2 quân bài.

Có \(C_{12}^2\) cách chọn ra 2 tứ quý từ 12 tứ quý còn lại. Mỗi tứ quý này có \(C_4^1\) cách chọn ra 1 quân bài nên số phần tử của biến cố \[D\] là: \(n\left( D \right) = C_{13}^1.C_4^2.C_{12}^2.{\left( {C_4^1} \right)^2} = 82368\).

Vậy xác suất của biến cố \(D\) là \[P\left( D \right) = P\left( D \right) = \frac{{n\left( D \right)}}{{n\left( \Omega  \right)}} = \frac{{82368}}{{270725}}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trường hợp 1: Lấy \(1\) quả màu vàng và \(2\) quả màu đỏ có: \(C_8^2 = 28\) cách.

Trường hợp 2: Lấy \(1\) quả màu vàng và \(2\) quả màu xanh có: \(C_3^2 = 3\) cách.

Trường hợp 3: Lấy \(1\) quả màu đỏ và \(2\) quả màu xanh có: \(C_8^1.C_3^2 = 24\) cách.

Trường hợp 4: Lấy \(1\) quả màu xanh và \(2\) quả màu đỏ có: \(C_3^1.C_8^2 = 84\) cách.

Số cách để lấy được \(3\) quả cầu có đúng hai màu là: \(28 + 3 + 24 + 84 = 139\) cách.

Cách khác:

Số cách lấy \(3\) quả bất kì: \(C_{12}^3 = 220\).

Số cách lấy \(3\) quả có đủ \(3\) màu: \(C_8^1.C_3^1.C_1^1 = 24\).

Số cách lấy \(3\) quả chỉ có \(1\) màu: \(C_8^3 + C_3^3 = 57\).

Vậy số cách lấy thỏa mãn yêu cầu bài toán là \(220 - 24 - 57 = 139\).

Lời giải

Tổng trọng lượng cá thu được sau một vụ là: \(T\left( n \right) = n\left( {360 - 10n} \right) = 360n - 10{n^2}\).

Đây là một tam thức bậc hai với ẩn là \(n\) có hệ số \(a =  - 10 < 0\) và \(b = 360\) \( \Rightarrow \frac{{ - b}}{{2a}} = \frac{{ - 360}}{{2.\left( { - 10} \right)}} = 18\)

Khi đó \(T\left( {18} \right) = 3240\).

Vậy người nuôi cần thả \(18\) con cá trên một đơn vị diện tích để đạt tổng trọng lượng cá lớn nhất là \(3240\) (đơn vị khối lượng).

Câu 4

A. \[\overrightarrow n = \left( {1; - 2} \right)\]                     
B. \[\overrightarrow n = \left( {2;1} \right)\]            
C. \[\overrightarrow n = \left( { - 2;3} \right)\]        
D. \[\overrightarrow n = \left( {1;3} \right)\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(45\).                    
B. \(4745\).              
C. \(90\).                         
D. \(106\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

a) Với \(m \ne 2\) thì \(f\left( x \right)\) là tam thức bậc hai.
Đúng
Sai
b) Khi \(m = 3\) thì \(f\left( x \right)\) luôn nhận giá trị dương với mọi \(x \in \mathbb{R}\).
Đúng
Sai
c) Tam thức bậc hai \[f\left( x \right)\] luôn nhận giá trị âm với mọi \(x \in \mathbb{R}\) khi và chỉ khi \(m \le 2\)
Đúng
Sai
d) Với mọi giá trị của \(m\) thì \(f\left( x \right) = 0\) đều có nghiệm.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP