Câu hỏi:

18/12/2025 9 Lưu

Từ một hộp chứa \(12\) quả cầu, trong đó có \(8\) quả màu đỏ, \(3\) quả màu xanh và \(1\) quả màu vàng, lấy ngẫu nhiên \(3\) quả. Số cách để lấy được \(3\) quả cầu có đúng hai màu bằng:

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trường hợp 1: Lấy \(1\) quả màu vàng và \(2\) quả màu đỏ có: \(C_8^2 = 28\) cách.

Trường hợp 2: Lấy \(1\) quả màu vàng và \(2\) quả màu xanh có: \(C_3^2 = 3\) cách.

Trường hợp 3: Lấy \(1\) quả màu đỏ và \(2\) quả màu xanh có: \(C_8^1.C_3^2 = 24\) cách.

Trường hợp 4: Lấy \(1\) quả màu xanh và \(2\) quả màu đỏ có: \(C_3^1.C_8^2 = 84\) cách.

Số cách để lấy được \(3\) quả cầu có đúng hai màu là: \(28 + 3 + 24 + 84 = 139\) cách.

Cách khác:

Số cách lấy \(3\) quả bất kì: \(C_{12}^3 = 220\).

Số cách lấy \(3\) quả có đủ \(3\) màu: \(C_8^1.C_3^1.C_1^1 = 24\).

Số cách lấy \(3\) quả chỉ có \(1\) màu: \(C_8^3 + C_3^3 = 57\).

Vậy số cách lấy thỏa mãn yêu cầu bài toán là \(220 - 24 - 57 = 139\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Tổng trọng lượng cá thu được sau một vụ là: \(T\left( n \right) = n\left( {360 - 10n} \right) = 360n - 10{n^2}\).

Đây là một tam thức bậc hai với ẩn là \(n\) có hệ số \(a =  - 10 < 0\) và \(b = 360\) \( \Rightarrow \frac{{ - b}}{{2a}} = \frac{{ - 360}}{{2.\left( { - 10} \right)}} = 18\)

Khi đó \(T\left( {18} \right) = 3240\).

Vậy người nuôi cần thả \(18\) con cá trên một đơn vị diện tích để đạt tổng trọng lượng cá lớn nhất là \(3240\) (đơn vị khối lượng).

Lời giải

Phương trình parabol có dạng \({y^2} = {\rm{2}}px\), với \(p > 0\).

Ta có \(\left( P \right):{y^2} = 2x\)\( \Rightarrow p = 1\). Suy ra đường chuẩn \(\Delta :x =  - \frac{p}{2} =  - \frac{1}{2} \Rightarrow x + \frac{1}{2} = 0\).

Ta lại có \(\left\{ \begin{array}{l}M\left( {a;\,b} \right) \in \left( P \right)\\d\left( {M,\Delta } \right) = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{b^2} = 2a\\\left| {a + \frac{1}{2}} \right| = 2\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{b^2} = 2a\\a + \frac{1}{2} = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = \frac{3}{2}\\{b^2} = 3\end{array} \right.\)

Suy ra \(T = {a^2} + {b^2} = \frac{{21}}{4}\).

Câu 3

A. \(81\).                    
B. \( - 12\).               
C. \(54\).                         
D. \( - 108\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(45\).                    
B. \(4745\).              
C. \(90\).                         
D. \(106\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP