Một lớp học có \(30\) học sinh gồm có cả nam và nữ. Chọn ngẫu nhiên \(3\) học sinh để tham gia hoạt động của Đoàn trường. Xác suất chọn được \(2\) nam và \(1\) nữ là \(\frac{{12}}{{29}}\). Tính số học sinh nữ của lớp.
Một lớp học có \(30\) học sinh gồm có cả nam và nữ. Chọn ngẫu nhiên \(3\) học sinh để tham gia hoạt động của Đoàn trường. Xác suất chọn được \(2\) nam và \(1\) nữ là \(\frac{{12}}{{29}}\). Tính số học sinh nữ của lớp.
Quảng cáo
Trả lời:
Gọi số học sinh nữ của lớp là \(n\,\,\left( {n \in {{\rm N}^*},n \le 28} \right)\). Suy ra số học sinh nam là \(30 - n\).
Không gian mẫu là chọn bất kì \(3\)học sinh từ \(30\) học sinh.
Suy ra số phần tử của không gian mẫu là \(n\left( \Omega \right) = C_{30}^3\).
Gọi \(A\) là biến cố Chọn được \(2\) học sinh nam và \(1\) học sinh nữ .
Chọn \(2\) nam trong \(30 - n\) nam, có\(C_{30 - n}^2\) cách.
Chọn \(1\) nữ trong \(n\) nữ, có \(C_n^1\) cách.
Suy ra số phần tử của biến cố \(A\) là \(n\left( A \right) = C_{30 - n}^2.C_n^1\).
Do đó xác suất của biến cố\(A\) là \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{C_{30 - n}^2.C_n^1}}{{C_{30}^3}}\).
Theo giả thiết, ta có \(P\left( A \right) = \frac{{12}}{{29}} \Leftrightarrow \frac{{C_{30 - n}^2.C_n^1}}{{C_{30}^3}} = \frac{{12}}{{29}} \Rightarrow n = 14\).
Vậy số học sinh nữ của lớp là \(14\) học sinh.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trường hợp 1: Lấy \(1\) quả màu vàng và \(2\) quả màu đỏ có: \(C_8^2 = 28\) cách.
Trường hợp 2: Lấy \(1\) quả màu vàng và \(2\) quả màu xanh có: \(C_3^2 = 3\) cách.
Trường hợp 3: Lấy \(1\) quả màu đỏ và \(2\) quả màu xanh có: \(C_8^1.C_3^2 = 24\) cách.
Trường hợp 4: Lấy \(1\) quả màu xanh và \(2\) quả màu đỏ có: \(C_3^1.C_8^2 = 84\) cách.
Số cách để lấy được \(3\) quả cầu có đúng hai màu là: \(28 + 3 + 24 + 84 = 139\) cách.
Cách khác:
Số cách lấy \(3\) quả bất kì: \(C_{12}^3 = 220\).
Số cách lấy \(3\) quả có đủ \(3\) màu: \(C_8^1.C_3^1.C_1^1 = 24\).
Số cách lấy \(3\) quả chỉ có \(1\) màu: \(C_8^3 + C_3^3 = 57\).
Vậy số cách lấy thỏa mãn yêu cầu bài toán là \(220 - 24 - 57 = 139\).
Lời giải
Tổng trọng lượng cá thu được sau một vụ là: \(T\left( n \right) = n\left( {360 - 10n} \right) = 360n - 10{n^2}\).
Đây là một tam thức bậc hai với ẩn là \(n\) có hệ số \(a = - 10 < 0\) và \(b = 360\) \( \Rightarrow \frac{{ - b}}{{2a}} = \frac{{ - 360}}{{2.\left( { - 10} \right)}} = 18\)
Khi đó \(T\left( {18} \right) = 3240\).
Vậy người nuôi cần thả \(18\) con cá trên một đơn vị diện tích để đạt tổng trọng lượng cá lớn nhất là \(3240\) (đơn vị khối lượng).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.