Một chất điểm \(A\) chịu tác dụng của ba lực \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} ,\overrightarrow {{F_3}} \) như hình vẽ. Biết chất điểm \(A\) đang ở trạng thái cân bằng (như hình vẽ); lực \(\overrightarrow {{F_1}} \) có độ lớn 12 N. Độ lớn của các lực \(\overrightarrow {{F_3}} \) bằng bao nhiêu Niutơn?
Một chất điểm \(A\) chịu tác dụng của ba lực \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} ,\overrightarrow {{F_3}} \) như hình vẽ. Biết chất điểm \(A\) đang ở trạng thái cân bằng (như hình vẽ); lực \(\overrightarrow {{F_1}} \) có độ lớn 12 N. Độ lớn của các lực \(\overrightarrow {{F_3}} \) bằng bao nhiêu Niutơn?

Câu hỏi trong đề: Bài tập ôn tập Toán 10 Cánh diều Chương 4 có đáp án !!
Quảng cáo
Trả lời:
Đặt \(\overrightarrow {{F_1}} = \overrightarrow {AB} ,\overrightarrow {{F_2}} = \overrightarrow {AD} ,\overrightarrow {{F_3}} = \overrightarrow {AE} \). Vẽ hình chữ nhật \(ABCD\).
Vật ở trạng thái cân bằng nên \(\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = \overrightarrow 0 \)\( \Rightarrow \overrightarrow {{F_3}} = - \left( {\overrightarrow {{F_1}} + \overrightarrow {{F_2}} } \right) = - \left( {\overrightarrow {AB} + \overrightarrow {AD} } \right) = - \overrightarrow {AC} \).
Ta có \(AB = 12,\widehat {CAD} = 180^\circ - 120^\circ = 60^\circ \Rightarrow \widehat {BAC} = 30^\circ \).
Tam giác \(ABC\) vuông tại \(B\), ta có \(\cos \widehat {BAC} = \frac{{AB}}{{AC}} \Rightarrow AC = \frac{{AB}}{{\cos \widehat {BAC}}} = \frac{{12}}{{\cos 30^\circ }} = 8\sqrt 3 \).
Vậy \(\left| {{F_3}} \right| = \left| {\overrightarrow {AC} } \right| = AC = 8\sqrt 3 \) (N).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Áp dụng định lí cô sin cho tam giác \(BCD\), có
\(B{C^2} = C{D^2} + B{D^2} - 2CD \cdot DB \cdot \cos D = {500^2} + {400^2} - 2 \cdot 500 \cdot 400 \cdot \cos 122^\circ \Rightarrow BC \approx 789\)(m).
Áp dụng định lí sin cho tam giác \(BCD\), có:
\(\frac{{BC}}{{\sin D}} = \frac{{BD}}{{\sin C}} \Rightarrow \sin C = \frac{{BD \cdot \sin D}}{{BC}} = \frac{{400 \cdot \sin 122^\circ }}{{789}} \Rightarrow \widehat C \approx 25,5^\circ \).
Suy ra \(\widehat {ACB} = 138^\circ - 25,5^\circ = 112,5^\circ \).
Áp dụng định lí cô sin cho tam giác \(ABC\), có
\(A{B^2} = A{C^2} + B{C^2} - 2AC \cdot BC \cdot \cos C = {400^2} + {789^2} - 2 \cdot 400 \cdot 789 \cdot \cos 112,5^\circ \Rightarrow AB \approx 1012\) (m).
Câu 2
a) Điểm \(M\) nằm giữa hai điểm \(A\) và \(B\).
b) \(\overrightarrow {AM} = \frac{3}{5}\overrightarrow {AB} \).
c) \(\overrightarrow {CM} = - \frac{2}{5}\overrightarrow {AC} + \frac{3}{5}\overrightarrow {AB} \).
Lời giải

a) \(2\overrightarrow {MA} + 3\overrightarrow {MB} = \overrightarrow 0 \) nên \(\overrightarrow {MA} ,\overrightarrow {MB} \) là hai vectơ ngược hướng.
Suy ra điểm \(M\) nằm giữa hai điểm \(A\) và \(B\).
b) \(2\overrightarrow {MA} + 3\overrightarrow {MB} = \overrightarrow 0 \)\( \Leftrightarrow \overrightarrow {MA} = - \frac{3}{2}\overrightarrow {MB} \)\( \Leftrightarrow \overrightarrow {AM} = \frac{3}{2}\overrightarrow {MB} \)\( \Leftrightarrow \overrightarrow {AM} = \frac{3}{5}\overrightarrow {AB} \).
c) \(\overrightarrow {CM} = \overrightarrow {CA} + \overrightarrow {AM} = - \overrightarrow {AC} + \frac{3}{5}\overrightarrow {AB} \).
d) \(\overrightarrow {CA} \cdot \overrightarrow {CM} = \overrightarrow {CA} \left( { - \overrightarrow {AC} + \frac{3}{5}\overrightarrow {AB} } \right)\)\( = {\overrightarrow {AC} ^2} - \frac{3}{5}\overrightarrow {AC} \cdot \overrightarrow {AB} \)\( = {\overrightarrow {AC} ^2} - \frac{3}{5}\left| {\overrightarrow {AC} } \right| \cdot \left| {\overrightarrow {AB} } \right| \cdot \cos \left( {\overrightarrow {AC} ,\overrightarrow {AB} } \right)\)
\( = 4{a^2} - \frac{3}{5} \cdot 2a \cdot a \cdot \cos 60^\circ \)\( = 4{a^2} - \frac{3}{5}{a^2} = \frac{{17}}{5}{a^2}\).
Đáp án: a) Đúng; b) Đúng; c) Sai; d) Đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
