Số nghiệm nguyên của bất phương trình \[\frac{{x - 1}}{x} - \frac{6}{{x + 2}} + 2 \le 0\] là bao nhiêu?
Quảng cáo
Trả lời:
Điều kiện: \[x \ne 0;x \ne - 2\].
Ta có \[\frac{{x - 1}}{x} - \frac{6}{{x + 2}} + 2 \le 0 \Leftrightarrow \frac{{\left( {x - 1} \right)\left( {x + 2} \right) - 6x + 2x\left( {x + 2} \right)}}{{x\left( {x + 2} \right)}} \le 0 \Leftrightarrow \frac{{3{x^2} - x - 2}}{{{x^2} + 2x}} \le 0\].
Ta có bảng xét dấu sau

Dựa vào bảng xét dấu ta có tập nghiệm của bất phương trình là \[S = \left( { - 2; - \frac{2}{3}} \right] \cup \left( {0;1} \right]\].
Kết hợp giả thiết ta có các nghiệm nguyên thỏa mãn là: \[\left\{ { - 1;1} \right\}\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \(f\left( x \right) < 0,\forall x \in \mathbb{R}\).
B. \(f\left( x \right) = 0,\forall x \in \mathbb{R}\).
C. \(f\left( x \right) \le 0,\forall x \in \mathbb{R}\).
D. \(f\left( x \right) > 0,\forall x \in \mathbb{R}\).
Lời giải
Đáp án đúng là D
Từ bảng xét dấu ta thấy \(f\left( x \right) > 0,\forall x \in \mathbb{R}\).
Câu 2
A. \[{x^2} + {y^2} - 2x - 8y + 20 = 0\].
B. \[4{x^2} + {y^2} - 10x - 6y - 2 = 0\].
C. \[{x^2} + {y^2} - 4x + 6y - 12 = 0\].
D. \[{x^2} + 2{y^2} - 4x - 8y + 1 = 0\].
Lời giải
Đáp án đúng là C
Phương án A: \[{x^2} + {y^2} - 2x - 8y + 20 = 0 \Leftrightarrow {\left( {x - 1} \right)^2} + {\left( {y - 4} \right)^2} = - 3\] (loại).
Phương án B và D loại vì hệ số của \({x^2}\) và \({y^2}\) không bằng nhau.
Phương án C: \[{x^2} + {y^2} - 4x + 6y - 12 = 0 \Leftrightarrow {\left( {x - 2} \right)^2} + {\left( {y + 3} \right)^2} = 25\] (nhận).
Câu 3
A. \(S = \left\{ 1 \right\}\).
B. \(S = \left\{ { - 1} \right\}\).
C. \(S = \left\{ 0 \right\}\).
D. \(S = \emptyset \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. 8.
B. 10.
C. 2.
D. 12.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(D = \left[ {1; + \infty } \right)\).
B. \(D = \left( {1; + \infty } \right)\).
C. \(D = \mathbb{R}\backslash \left\{ 1 \right\}\).
D. \(D = \left( { - \infty ;\,1} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(\overrightarrow n = \left( {1;2} \right)\).
B. \(\overrightarrow n = \left( {4; - 2} \right)\).
C. \(\overrightarrow n = \left( {2;1} \right)\).
D. \(\overrightarrow n = \left( { - 2; - 1} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \[15\].
B. \[8\].
C. \[8!\].
D. \[7!\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
