Câu hỏi:

21/12/2025 3 Lưu

Số nghiệm nguyên của bất phương trình \[\frac{{x - 1}}{x} - \frac{6}{{x + 2}} + 2 \le 0\] là bao nhiêu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Điều kiện: \[x \ne 0;x \ne  - 2\].

Ta có \[\frac{{x - 1}}{x} - \frac{6}{{x + 2}} + 2 \le 0 \Leftrightarrow \frac{{\left( {x - 1} \right)\left( {x + 2} \right) - 6x + 2x\left( {x + 2} \right)}}{{x\left( {x + 2} \right)}} \le 0 \Leftrightarrow \frac{{3{x^2} - x - 2}}{{{x^2} + 2x}} \le 0\].

Ta có bảng xét dấu sau

A math problems with numbers

Description automatically generated with medium confidence

Dựa vào bảng xét dấu ta có tập nghiệm của bất phương trình là \[S = \left( { - 2; - \frac{2}{3}} \right] \cup \left( {0;1} \right]\].

Kết hợp giả thiết ta có các nghiệm nguyên thỏa mãn là: \[\left\{ { - 1;1} \right\}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(f\left( x \right) < 0,\forall x \in \mathbb{R}\).                                            

B. \(f\left( x \right) = 0,\forall x \in \mathbb{R}\).

C. \(f\left( x \right) \le 0,\forall x \in \mathbb{R}\).                                           

D. \(f\left( x \right) > 0,\forall x \in \mathbb{R}\).

Lời giải

Đáp án đúng là D

Từ bảng xét dấu ta thấy \(f\left( x \right) > 0,\forall x \in \mathbb{R}\).

Câu 2

A. \[{x^2} + {y^2} - 2x - 8y + 20 = 0\].              

B. \[4{x^2} + {y^2} - 10x - 6y - 2 = 0\].

C. \[{x^2} + {y^2} - 4x + 6y - 12 = 0\].              

D. \[{x^2} + 2{y^2} - 4x - 8y + 1 = 0\].

Lời giải

Đáp án đúng là C

Phương án A: \[{x^2} + {y^2} - 2x - 8y + 20 = 0 \Leftrightarrow {\left( {x - 1} \right)^2} + {\left( {y - 4} \right)^2} =  - 3\] (loại).

Phương án B và D loại vì hệ số của \({x^2}\) và \({y^2}\) không bằng nhau.

Phương án C: \[{x^2} + {y^2} - 4x + 6y - 12 = 0 \Leftrightarrow {\left( {x - 2} \right)^2} + {\left( {y + 3} \right)^2} = 25\] (nhận).

Câu 3

A. \(S = \left\{ 1 \right\}\).                                   

B. \(S = \left\{ { - 1} \right\}\).

C. \(S = \left\{ 0 \right\}\).                        

D. \(S = \emptyset \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. 8.                               

B. 10.                           

C. 2.                             

D. 12.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(D = \left[ {1; + \infty } \right)\).                  

B. \(D = \left( {1; + \infty } \right)\).  

C. \(D = \mathbb{R}\backslash \left\{ 1 \right\}\).         

D. \(D = \left( { - \infty ;\,1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\overrightarrow n  = \left( {1;2} \right)\). 

B. \(\overrightarrow n  = \left( {4; - 2} \right)\).                                       

C. \(\overrightarrow n  = \left( {2;1} \right)\).           

D. \(\overrightarrow n  = \left( { - 2; - 1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[15\].                         

B. \[8\].                         

C. \[8!\].                       

D. \[7!\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP