Câu hỏi:

21/12/2025 3 Lưu

An và Bình cùng chơi một trò chơi, mỗi lượt chơi một bạn đặt úp năm tấm thẻ, trong đó có hai thẻ ghi số 2, hai thẻ ghi số 3 và một thẻ ghi số 4, bạn còn lại chọn ngẫu nhiên ba thẻ trong năm tấm thẻ đó. Người chọn thẻ thắng lượt chơi nếu tổng các số trên ba tấm thẻ được chọn bằng 8, ngược lại người kia sẽ thắng. Xác suất để An thắng lượt chơi khi An là người chọn thẻ bằng \(\frac{a}{b}\) với \(\frac{a}{b}\) là phân số tối giản và \(a,\,b \in \mathbb{Z}\). Khi đó \(T = 3a + b\) bằng bao nhiêu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Số phần tử của không gian mẫu là: \(n\left( \Omega  \right) = C_5^3 = 10\).

Gọi A là biến cố: “An thắng lượt chơi khi An là người chọn thẻ”.

Trường hợp 1: Chọn được 1 thẻ ghi số 2 và 2 thẻ ghi số 3. Số cách chọn là: \(C_2^1C_2^2\).

Trường hợp 2: Chọn được 2 thẻ ghi số 2 và 1 thẻ ghi số 4. Số cách chọn là: \(C_2^2C_1^1\).

Suy ra số phần tử của biến cố A là: \(n\left( A \right) = C_2^1C_2^2 + C_2^2C_1^1 = 3\).

Vậy xác suất của biến cố A là \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{3}{{10}} \Rightarrow \left\{ \begin{array}{l}a = 3\\b = 10\end{array} \right. \Rightarrow T = 3a + b = 3.3 + 10 = 19\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(f\left( x \right) < 0,\forall x \in \mathbb{R}\).                                            

B. \(f\left( x \right) = 0,\forall x \in \mathbb{R}\).

C. \(f\left( x \right) \le 0,\forall x \in \mathbb{R}\).                                           

D. \(f\left( x \right) > 0,\forall x \in \mathbb{R}\).

Lời giải

Đáp án đúng là D

Từ bảng xét dấu ta thấy \(f\left( x \right) > 0,\forall x \in \mathbb{R}\).

Câu 2

A. \[{x^2} + {y^2} - 2x - 8y + 20 = 0\].              

B. \[4{x^2} + {y^2} - 10x - 6y - 2 = 0\].

C. \[{x^2} + {y^2} - 4x + 6y - 12 = 0\].              

D. \[{x^2} + 2{y^2} - 4x - 8y + 1 = 0\].

Lời giải

Đáp án đúng là C

Phương án A: \[{x^2} + {y^2} - 2x - 8y + 20 = 0 \Leftrightarrow {\left( {x - 1} \right)^2} + {\left( {y - 4} \right)^2} =  - 3\] (loại).

Phương án B và D loại vì hệ số của \({x^2}\) và \({y^2}\) không bằng nhau.

Phương án C: \[{x^2} + {y^2} - 4x + 6y - 12 = 0 \Leftrightarrow {\left( {x - 2} \right)^2} + {\left( {y + 3} \right)^2} = 25\] (nhận).

Câu 3

A. \(S = \left\{ 1 \right\}\).                                   

B. \(S = \left\{ { - 1} \right\}\).

C. \(S = \left\{ 0 \right\}\).                        

D. \(S = \emptyset \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. 8.                               

B. 10.                           

C. 2.                             

D. 12.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(D = \left[ {1; + \infty } \right)\).                  

B. \(D = \left( {1; + \infty } \right)\).  

C. \(D = \mathbb{R}\backslash \left\{ 1 \right\}\).         

D. \(D = \left( { - \infty ;\,1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\overrightarrow n  = \left( {1;2} \right)\). 

B. \(\overrightarrow n  = \left( {4; - 2} \right)\).                                       

C. \(\overrightarrow n  = \left( {2;1} \right)\).           

D. \(\overrightarrow n  = \left( { - 2; - 1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP