Câu hỏi:

22/12/2025 120 Lưu

Lấy ngẫu nhiên hai thẻ từ một chiếc hộp chứa \(20\) thẻ được đánh số từ \(1\) đến \(20\). Hãy xác định tính đúng sai của các khẳng định sau:

a) Số phần tử của không gian mẫu là 190.

b) Số phần tử của biến cố lấy được hai thẻ mang số lẻ là \[45\].

c) Xác suất để hai thẻ lấy ra có tổng chia hết cho \[2\] là \[\frac{9}{{38}}\].

d) Xác suất để hai thẻ lấy ra có tích chia hết cho \[2\] là \[\frac{{29}}{{38}}\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng: Số phần tử của không gian mẫu là \[n\left( \Omega  \right) = C_{20}^2 = 190\].

b) Đúng: Số phần tử của biến cố lấy được hai thẻ mang số lẻ là \[C_{10}^2 = 45\].

c) Sai: Chọn hai thẻ mang số chẵn \[C_{10}^2\].

Chọn hai thẻ mang số lẻ \[C_{10}^2\].

Suy ra số phần tử của biến cố hai thẻ lấy ra có tổng chia hết cho \[2\] là \[C_{10}^2 + C_{10}^2 = 90\].

Xác suất của biến cố hai thẻ lấy ra có tổng chia hết cho \[2\] là \[\frac{{90}}{{190}} = \frac{9}{{19}}\].

d) Đúng: Chọn hai thẻ mang số chẵn \[C_{10}^2\].

Chọn một thẻ mang số chẵn và một thẻ mang số lẻ \[C_{10}^1.C_{10}^1\].

Suy ra số phần tử của biến cố hai thẻ lấy ra có tích chia hết cho \[2\] là \[C_{10}^2 + C_{10}^1.C_{10}^1 = 145\].

Xác suất của biến cố hai thẻ lấy ra có tích chia hết cho \[2\] là \[\frac{{145}}{{190}} = \frac{{29}}{{38}}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng: Số cách xếp ngẫu nhiên \(7\) học sinh không kể nam nữ lên ghế là một hoán vị của \(7\): \[{P_7} = 5040\].

b) Sai: Các học sinh cùng giới ngồi cạnh nhau, ta coi các bạn nam là nhóm A, các bạn nữ là nhóm B. Xếp \(2\) nhóm này lên ghế có: \(2! = 2\) cách.

Hoán vị \(5\) học sinh nam có: \(5! = 120\) cách

Hoán vị \(2\) học sinh nữ có: \(2! = 2\) cách

Vậy số cách xếp để học sinh cùng giới ngồi cạnh nhau là \(2.120.2 = 480\)cách.

c) Đúng: Xếp \(2\) học sinh nữ vào \(2\) đầu ghế có: \(2! = 2\) cách.

Xếp \(5\) học sinh nam vào \(5\) vị trí ở giữa có: \(5! = 120\) cách

Vậy số cách xếp để \(2\) học sinh nữ ngồi ở \(2\)đầu ghế là \(2.120 = 240\)cách.

d) Đúng: Để \(2\) học sinh nữ ngồi cạnh nhau ta coi \(2\) học sinh nữ là nhóm A.

Xếp nhóm \(A\) và \(5\) học sinh nam ghế có: \(6! = 720\) cách.

Hoán vị \(2\) học sinh nữ có: \(2! = 2\) cách

Vậy số cách xếp để \(2\) học sinh nữ ngồi cạnh nhau là \(720.2 = 1440\)cách.

Suy ra xếp \(7\) học sinh vào ghế, số cách xếp để\(2\) học sinh nữ không ngồi cạnh nhau là \[5040 - 1440 = 3600\].

Lời giải

Ta có: \({x^2} + (m - 2)x + 5m + 1 > 0\)\(,\forall x \in \mathbb{R}\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a > 0}\\{\Delta  < 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{1 > 0}\\{{{\left( {m - 2} \right)}^2} - 4\left( {5m + 1} \right) < 0}\end{array}} \right.\)\( \Leftrightarrow {m^2} - 24m < 0 \Leftrightarrow m \in \left( {0\,;\,24} \right)\).

Vậy có tất cả \(23\) giá trị thoả mãn.

Câu 4

A. \(\left\{ 0 \right\}\).     
B. \(\left\{ { - \frac{8}{3};0} \right\}\).              
C. \(\emptyset \).        
D. \(\left\{ { - \frac{8}{3}} \right\}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP