Một quả bóng cầu thủ sút lên rồi rơi xuống theo quỹ đạo là parabol. Biết rằng ban đầu quả bóng được sút lên từ độ cao \(1m\) sau đó \(1\) giây nó đạt độ cao \(6m\) và \(3,5\) giây nó ở độ cao \(9,75m\). Hỏi độ cao cao nhất mà quả bóng đạt được là bao nhiêu mét?
Quảng cáo
Trả lời:

Chọn hệ trục tọa độ như hình vẽ
Giả sử quỹ đạo của quả bóng là parabol \(\left( P \right)\) có phương trình \(y\; = a{x^2} + bx + c\,\left( {a \ne 0} \right)\).
Gắn hệ trục tọa độ tại các điểm \(x\, = \,0;\,x\, = 1;\,x\, = \,3,5\).\(\)
Theo giả thiết suy ra|C|D|0|2|5| parabol \(\left( P \right)\) đi qua các điểm \(A\left( {0;1} \right),\,B\left( {1;6} \right),\,C\left( {3,5;\,9,75} \right)\) ta có hệ
\(\left\{ \begin{array}{l}c\, = \,1\\a\, + b\, + c\, = 6\\\frac{{49}}{4}a + \frac{7}{2}b\, + c\, = \,9,75\end{array} \right. \Rightarrow \left\{ \begin{array}{l}c\, = \,1\\b\, = \,6\\a\, = \, - 1\end{array} \right. \Rightarrow \left( P \right):\,y\, = \, - {x^2} + 6x\, + 1\).
Ta có \(y\, = \, - {x^2} + 6x + 1\, = \, - {\left( {x - 3} \right)^2} + 10 \le \,10\).
Suy ra độ cao nhất mà quả bóng đạt được là \(10m\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: \({x^2} + (m - 2)x + 5m + 1 > 0\)\(,\forall x \in \mathbb{R}\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a > 0}\\{\Delta < 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{1 > 0}\\{{{\left( {m - 2} \right)}^2} - 4\left( {5m + 1} \right) < 0}\end{array}} \right.\)\( \Leftrightarrow {m^2} - 24m < 0 \Leftrightarrow m \in \left( {0\,;\,24} \right)\).
Vậy có tất cả \(23\) giá trị thoả mãn.
Câu 2
Lời giải
Đáp án đúng là A
Ta có: \(\sqrt {3{x^2} - 4x + 4} = 3x + 2 \Leftrightarrow \left\{ \begin{array}{l}3x + 2 \ge 0\\3{x^2} - 4x + 4 = {\left( {3x + 2} \right)^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge - \frac{2}{3}\\6{x^2} + 16x = 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}x \ge - \frac{2}{3}\\x = 0,x = - \frac{8}{3}\end{array} \right. \Leftrightarrow x = 0\).
Vậy tập nghiệm của phương trình là \(\left\{ 0 \right\}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.