Câu hỏi:

22/12/2025 6 Lưu

Có tất cả bao nhiêu giá trị nguyên của tham số \(m\) để bất phương trình \({x^2} + \left( {m - 2} \right)x + 5m + 1 > 0\)nghiệm đúng với mọi \(x \in \mathbb{R}\)?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có: \({x^2} + (m - 2)x + 5m + 1 > 0\)\(,\forall x \in \mathbb{R}\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a > 0}\\{\Delta  < 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{1 > 0}\\{{{\left( {m - 2} \right)}^2} - 4\left( {5m + 1} \right) < 0}\end{array}} \right.\)\( \Leftrightarrow {m^2} - 24m < 0 \Leftrightarrow m \in \left( {0\,;\,24} \right)\).

Vậy có tất cả \(23\) giá trị thoả mãn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\left\{ 0 \right\}\).     
B. \(\left\{ { - \frac{8}{3};0} \right\}\).              
C. \(\emptyset \).        
D. \(\left\{ { - \frac{8}{3}} \right\}\).

Lời giải

Đáp án đúng là A

Ta có: \(\sqrt {3{x^2} - 4x + 4}  = 3x + 2 \Leftrightarrow \left\{ \begin{array}{l}3x + 2 \ge 0\\3{x^2} - 4x + 4 = {\left( {3x + 2} \right)^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge  - \frac{2}{3}\\6{x^2} + 16x = 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}x \ge  - \frac{2}{3}\\x = 0,x =  - \frac{8}{3}\end{array} \right. \Leftrightarrow x = 0\).

Vậy tập nghiệm của phương trình là \(\left\{ 0 \right\}\).

Lời giải

Một quả bóng cầu thủ sút lên rồi rơi xuống theo quỹ đạo là parabol (ảnh 1)

Chọn hệ trục tọa độ như hình vẽ

Giả sử quỹ đạo của quả bóng là parabol \(\left( P \right)\) có phương trình \(y\; = a{x^2} + bx + c\,\left( {a \ne 0} \right)\).

Gắn hệ trục tọa độ tại các điểm \(x\, = \,0;\,x\, = 1;\,x\, = \,3,5\).\(\)

Theo giả thiết suy ra|C|D|0|2|5| parabol \(\left( P \right)\) đi qua các điểm \(A\left( {0;1} \right),\,B\left( {1;6} \right),\,C\left( {3,5;\,9,75} \right)\) ta có hệ

\(\left\{ \begin{array}{l}c\, = \,1\\a\, + b\, + c\, = 6\\\frac{{49}}{4}a + \frac{7}{2}b\, + c\, = \,9,75\end{array} \right. \Rightarrow \left\{ \begin{array}{l}c\, = \,1\\b\, = \,6\\a\, = \, - 1\end{array} \right. \Rightarrow \left( P \right):\,y\, = \, - {x^2} + 6x\, + 1\).

Ta có \(y\, = \, - {x^2} + 6x + 1\, = \, - {\left( {x - 3} \right)^2} + 10 \le \,10\).

Suy ra độ cao nhất mà quả bóng đạt được là \(10m\).