Cho hàm số \(y = a{x^2} + bx + c\) có đồ thị như hình vẽ dưới đây. Khẳng định nào sau đây là đúng?
Cho hàm số \(y = a{x^2} + bx + c\) có đồ thị như hình vẽ dưới đây. Khẳng định nào sau đây là đúng?

A. \(a > 0,\,\,b > 0,\,\,c > 0\);
B. \(a > 0,\,\,b > 0,\,\,c < 0\);
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 2 Toán 10 Kết nối tri thức có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: B

Đồ thị hàm số cắt trục \(Oy\) tại điểm nằm phía dưới trục \(Ox\) nên \(c < 0\).
Đồ thị có bề lõm hướng lên trên nên \(a > 0\).
Tọa độ đỉnh nằm ở phía bên trái trục \(Oy\) nên \( - \frac{b}{{2a}} < 0 \Rightarrow b > 0\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: D
Ta có: \(\overrightarrow {AB} = \left( {5 - 1;\,\,4 - 2} \right) = \left( {4;\,\,2} \right)\) là một vectơ chỉ phương của đường thẳng \(AB\), nên \(\overrightarrow u = \left( {2;\,\, - 4} \right)\) là một vectơ pháp tuyến của đường thẳng \(AB\).
Do đó, đường thẳng \(AB\) cũng có một vectơ chỉ phương là \(\overrightarrow {u'} = - \frac{1}{2}\overrightarrow u = - \frac{1}{2}\left( {2;\,\, - 4} \right) = \left( { - 1;\,\,2} \right)\).
Câu 2
Lời giải
Đáp án đúng là: A
Ta có: \(y = 2{x^2} + x - 3\) có hệ số \(a = 2 > 0\), do đó đồ thị hàm số này có bề lõm hướng lên trên, điểm thấp nhất của đồ thị là đỉnh. Vậy hàm số đạt giá trị nhỏ nhất tại đỉnh.
Tung độ của đỉnh là \(y = - \frac{\Delta }{{4a}} = - \frac{{{1^2} - 4.2.\left( { - 3} \right)}}{{4.2}} = - \frac{{25}}{8}\).
Vậy hàm số đã cho có giá trị nhỏ nhất là \(\frac{{ - 25}}{8}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
