Câu hỏi:

01/01/2026 44 Lưu

Góc giữa hai đường thẳng \[{\Delta _1}:\,x - 2y + 15 = 0\] và \[{\Delta _2}:\,\left\{ \begin{array}{l}x = 2 - t\\y = 4 + 2t\end{array} \right.\,\,\left( {\,t \in \mathbb{R}\,} \right)\] bằng

A. \(5^\circ \);
B. \(60^\circ \); 
C. \(0^\circ \);
D. \(90^\circ \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D

Đường thẳng \[{\Delta _1}\]có một vectơ pháp tuyến là là \(\overrightarrow {{n_1}} \left( {{\mkern 1mu} 1; - 2{\mkern 1mu} } \right)\).

Đường thẳng \[{\Delta _2}\]có một vectơ chỉ phương là \(\overrightarrow u \left( { - 1;2} \right)\) suy ra \({\Delta _2}\) có một vectơ pháp tuyến là \(\overrightarrow {{n_2}} \left( {2;1} \right)\).

Ta có: \(\overrightarrow {{n_1}} .\overrightarrow {{n_2}}  = 1.2 + \left( { - 2} \right).1 = 0\) suy ra \({\Delta _1} \bot {\Delta _2}\).

Vậy góc giữa hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) bằng \(90^\circ \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Một mảnh vườn hình elip có độ dài trục lớn bằng 12m, độ dài trục bé bằng 8m. Người ta dự định trồng hoa trong một hình chữ nhật nội tiếp của elip như hình vẽ. Hỏi diện tích trồng hoa lớn nhất có thể là? (ảnh 2)

Đặt phương trình chính tắc của \(\left( E \right):\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\).

Ta có \(2a = 12 \Rightarrow a = 6\), \(2b = 8 \Rightarrow b = 4\). Suy ra \(\left( E \right):\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{{16}} = 1\).

Chọn \(C\left( {{x_C};\,{y_C}} \right)\) là đỉnh hình chữ nhật và \({x_C} > 0,{y_C} > 0\).

\( \Rightarrow \frac{{x_C^2}}{{36}} + \frac{{y_C^2}}{{16}} = 1\);

Diện tích hình chữ nhật là \(S = 4{x_C}{y_C} = 48.2.\frac{{{x_C}}}{6}.\frac{{{y_C}}}{4} \le 48\left( {\frac{{x_C^2}}{{36}} + \frac{{y_C^2}}{{16}}} \right) = 48\).

Vậy diện tích trồng hoa lớn nhất có thể là \(48{m^2}\).

Câu 2

A. \(a > 0,\,\,b < 0,\,\,c > 0\);  
B. \(a < 0,\,\,b > 0,\,\,c > 0\);
C. \(a < 0,\,\,b < 0,\,\,c > 0\); 
D. \(a < 0,\,\,b > 0,\,\,c < 0\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Vì Parabol có bề lõm quay xuống dưới nên \(a < 0\).

Ta gọi I là đỉnh của Parabol có \({x_I} =  - \frac{b}{{2a}} =  - 1 < 0\) mà \(a < 0\) nên \(b < 0\).

Đồ thị hàm số cắt trục tung tại điểm có tung độ dương nên \(c > 0\).

Vậy \(a < 0,\,\,b < 0,\,\,c > 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP