Câu hỏi:

01/01/2026 198 Lưu

Một mảnh vườn hình elip có độ dài trục lớn bằng \(12m\), độ dài trục bé bằng \(8m\). Người ta dự định trồng hoa trong một hình chữ nhật nội tiếp của elip như hình vẽ. Hỏi diện tích trồng hoa lớn nhất có thể là?

Một mảnh vườn hình elip có độ dài trục lớn bằng 12m, độ dài trục bé bằng 8m. Người ta dự định trồng hoa trong một hình chữ nhật nội tiếp của elip như hình vẽ. Hỏi diện tích trồng hoa lớn nhất có thể là? (ảnh 1)

A. \(\frac{{576}}{{13}}{m^2}\);
B. \(48\,{m^2}\); 
C. \(62\,{m^2}\); 
D. \(46\,{m^2}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Một mảnh vườn hình elip có độ dài trục lớn bằng 12m, độ dài trục bé bằng 8m. Người ta dự định trồng hoa trong một hình chữ nhật nội tiếp của elip như hình vẽ. Hỏi diện tích trồng hoa lớn nhất có thể là? (ảnh 2)

Đặt phương trình chính tắc của \(\left( E \right):\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\).

Ta có \(2a = 12 \Rightarrow a = 6\), \(2b = 8 \Rightarrow b = 4\). Suy ra \(\left( E \right):\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{{16}} = 1\).

Chọn \(C\left( {{x_C};\,{y_C}} \right)\) là đỉnh hình chữ nhật và \({x_C} > 0,{y_C} > 0\).

\( \Rightarrow \frac{{x_C^2}}{{36}} + \frac{{y_C^2}}{{16}} = 1\);

Diện tích hình chữ nhật là \(S = 4{x_C}{y_C} = 48.2.\frac{{{x_C}}}{6}.\frac{{{y_C}}}{4} \le 48\left( {\frac{{x_C^2}}{{36}} + \frac{{y_C^2}}{{16}}} \right) = 48\).

Vậy diện tích trồng hoa lớn nhất có thể là \(48{m^2}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(a > 0,\,\,b < 0,\,\,c > 0\);  
B. \(a < 0,\,\,b > 0,\,\,c > 0\);
C. \(a < 0,\,\,b < 0,\,\,c > 0\); 
D. \(a < 0,\,\,b > 0,\,\,c < 0\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Vì Parabol có bề lõm quay xuống dưới nên \(a < 0\).

Ta gọi I là đỉnh của Parabol có \({x_I} =  - \frac{b}{{2a}} =  - 1 < 0\) mà \(a < 0\) nên \(b < 0\).

Đồ thị hàm số cắt trục tung tại điểm có tung độ dương nên \(c > 0\).

Vậy \(a < 0,\,\,b < 0,\,\,c > 0\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Số tam giác có thể tạo ra từ \(n\) điểm không có ba điểm nào thẳng hàng là: \(C_n^3\left( {n \ge 3} \right)\).

Số đoạn thẳng có thể tạo ra từ \(n\) điểm không có ba điểm nào thẳng hàng là: \(C_n^2\).

Vì số tam giác gấp đôi số đoạn thẳng được tạo ra nên ta có:

 \(C_n^3 = 2C_n^2\left( {n \in \mathbb{N},n \ge 3} \right)\)

\[ \Leftrightarrow \frac{{n!}}{{3!\left( {n - 3} \right)!}} = 2\frac{{n!}}{{2!\left( {n - 2} \right)!}}\]

\[ \Leftrightarrow \frac{{n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)!}}{{3!\left( {n - 3} \right)!}} = 2\frac{{n\left( {n - 1} \right)\left( {n - 2} \right)!}}{{2!\left( {n - 2} \right)!}}\]

\( \Leftrightarrow \frac{{n\left( {n - 1} \right)\left( {n - 2} \right)}}{6} = 2\frac{{n\left( {n - 1} \right)}}{2}\)

\( \Leftrightarrow n - 2 = 6\)

\( \Leftrightarrow n = 8\) (thỏa mãn điều kiện).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP