Một mảnh vườn hình elip có độ dài trục lớn bằng \(12m\), độ dài trục bé bằng \(8m\). Người ta dự định trồng hoa trong một hình chữ nhật nội tiếp của elip như hình vẽ. Hỏi diện tích trồng hoa lớn nhất có thể là?

Một mảnh vườn hình elip có độ dài trục lớn bằng \(12m\), độ dài trục bé bằng \(8m\). Người ta dự định trồng hoa trong một hình chữ nhật nội tiếp của elip như hình vẽ. Hỏi diện tích trồng hoa lớn nhất có thể là?

Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Đặt phương trình chính tắc của \(\left( E \right):\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\).
Ta có \(2a = 12 \Rightarrow a = 6\), \(2b = 8 \Rightarrow b = 4\). Suy ra \(\left( E \right):\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{{16}} = 1\).
Chọn \(C\left( {{x_C};\,{y_C}} \right)\) là đỉnh hình chữ nhật và \({x_C} > 0,{y_C} > 0\).
\( \Rightarrow \frac{{x_C^2}}{{36}} + \frac{{y_C^2}}{{16}} = 1\);
Diện tích hình chữ nhật là \(S = 4{x_C}{y_C} = 48.2.\frac{{{x_C}}}{6}.\frac{{{y_C}}}{4} \le 48\left( {\frac{{x_C^2}}{{36}} + \frac{{y_C^2}}{{16}}} \right) = 48\).
Vậy diện tích trồng hoa lớn nhất có thể là \(48{m^2}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Xét tam giác \(AIB\) có \(IH\) là đường cao.
Mà \(IH = {d_{\left( {I,d} \right)}} = \frac{{\left| {3.1 - 4.\left( { - 2} \right) - 1} \right|}}{{\sqrt {{3^2} + {{\left( { - 4} \right)}^2}} }} = 2\).
Ta có \[{S_{\Delta IAB}} = \frac{1}{2}IH.AB \Rightarrow AB = \frac{{2{S_{\Delta IAB}}}}{{IH}} = \frac{{2.4}}{2} = 4 \Rightarrow AH = 2\].
Xét tam giác \(AIH\) vuông tại \(H\) ta có:
\(IA = \sqrt {A{H^2} + I{H^2}} = \sqrt {{2^2} + {2^2}} = 2\sqrt 2 \).
Mà \(AI = R = 2\sqrt 2 \)
Phương trình đường tròn \(\left( C \right)\) là: \(\left( C \right):{\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} = 8\).
Lời giải
Hướng dẫn giải
Số phần tử của không gian mẫu \(n\left( \Omega \right) = {17^3} = 4913\).
Trong các số tự nhiên thuộc đoạn \(\left[ {1;17} \right]\) có \(5\) số chia hết cho \(3\) là \(3;6;9;12;15\), có \(6\) số chia cho \(3\) dư \(1\) là \(1;4;7;10;13;16\), có \(6\) số chia cho \(3\) dư \(2\) là \(3;5;8;11;14;17\).
Gọi \(A\) là biến cố “ba số được viết ra có tổng chia hết cho \(3\)” có các trường hợp sau:
Trường hợp 1: Cả ba số viết ra đều chia hết cho \(3\). Trường hợp này có: \({5^3}\) cách viết.
Trường hợp 2: Cả ba số viết ra đều chia cho \(3\) dư \(1\). Trường hợp này có: \({6^3}\) cách viết.
Trường hợp 3: Cả ba số viết ra đều chia cho \(3\) dư \(2\). Trường hợp này có: \({6^3}\) cách viết.
Trường hợp 4: Trong ba số được viết ra có \(1\) số chia hết cho \(3\) , có \(1\) số chia cho \(3\) dư \(1\), có \(1\) số chia cho \(3\) dư \(2\). Trong trường hợp này có: \(5.6.6.3!\) cách viết.
Vậy xác suất cần tìm là:
Số phần tử của biến cố \(A\) là: \({5^3} + {6^3} + {6^3} + 5.6.6.3! = 1637\).
Xác suất của biến cố \(A\) là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{1637}}{{4913}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.