PHẦN TỰ LUẬN
Trong mặt phẳng với hệ tọa độ \[Oxy\], cho đường thẳng \(d:3x - 4y - 1 = 0\) và điểm \(I\left( {1;\, - 2} \right)\). Gọi \(\left( C \right)\) là đường tròn có tâm \(I\) và cắt đường thẳng \(d\) tại hai điểm \(A\) và \(B\) sao cho tam giác \(IAB\) có diện tích bằng \(4\). Viết phương trình đường tròn \(\left( C \right)\).
PHẦN TỰ LUẬN
Trong mặt phẳng với hệ tọa độ \[Oxy\], cho đường thẳng \(d:3x - 4y - 1 = 0\) và điểm \(I\left( {1;\, - 2} \right)\). Gọi \(\left( C \right)\) là đường tròn có tâm \(I\) và cắt đường thẳng \(d\) tại hai điểm \(A\) và \(B\) sao cho tam giác \(IAB\) có diện tích bằng \(4\). Viết phương trình đường tròn \(\left( C \right)\).
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 2 Toán 10 Kết nối tri thức có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Xét tam giác \(AIB\) có \(IH\) là đường cao.
Mà \(IH = {d_{\left( {I,d} \right)}} = \frac{{\left| {3.1 - 4.\left( { - 2} \right) - 1} \right|}}{{\sqrt {{3^2} + {{\left( { - 4} \right)}^2}} }} = 2\).
Ta có \[{S_{\Delta IAB}} = \frac{1}{2}IH.AB \Rightarrow AB = \frac{{2{S_{\Delta IAB}}}}{{IH}} = \frac{{2.4}}{2} = 4 \Rightarrow AH = 2\].
Xét tam giác \(AIH\) vuông tại \(H\) ta có:
\(IA = \sqrt {A{H^2} + I{H^2}} = \sqrt {{2^2} + {2^2}} = 2\sqrt 2 \).
Mà \(AI = R = 2\sqrt 2 \)
Phương trình đường tròn \(\left( C \right)\) là: \(\left( C \right):{\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} = 8\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Đặt phương trình chính tắc của \(\left( E \right):\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\).
Ta có \(2a = 12 \Rightarrow a = 6\), \(2b = 8 \Rightarrow b = 4\). Suy ra \(\left( E \right):\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{{16}} = 1\).
Chọn \(C\left( {{x_C};\,{y_C}} \right)\) là đỉnh hình chữ nhật và \({x_C} > 0,{y_C} > 0\).
\( \Rightarrow \frac{{x_C^2}}{{36}} + \frac{{y_C^2}}{{16}} = 1\);
Diện tích hình chữ nhật là \(S = 4{x_C}{y_C} = 48.2.\frac{{{x_C}}}{6}.\frac{{{y_C}}}{4} \le 48\left( {\frac{{x_C^2}}{{36}} + \frac{{y_C^2}}{{16}}} \right) = 48\).
Vậy diện tích trồng hoa lớn nhất có thể là \(48{m^2}\).
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Chọn ra \(3\) người có cả nam và nữ, có cả nhà toán học và vật lý ta có các trường hợp sau:
Trường hợp 1: Chọn được \(1\) nhà vật lý nam, \(2\) nhà toán học nữ có \(C_4^1C_3^2 = 18\) cách chọn.
Trường hợp 2: Chọn được \(1\) nhà vật lý nam, \(1\) nhà toán học nữ và \(1\) nhà toán học nam có \(C_4^1C_3^1C_5^1 = 60\) cách chọn.
Trường hợp 3: Chọn được \(2\) nhà vật lý nam, \(1\) nhà toán học nữ có \(C_4^2C_3^1 = 18\) cách chọn.
Vậy, có \(18 + 60 + 18 = 96\) cách chọn thỏa yêu cầu bài toán.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

