Trong vườn hoa có \(11\) bông hồng trắng, \(8\) bông hồng đỏ. Bạn Lan làm một bó hoa gồm \(10\) bông trong đó có đúng \(3\) bông đỏ để tặng mẹ. Hỏi bạn Lan có thể làm được bao nhiêu bó hoa như vậy?
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 2 Toán 10 Kết nối tri thức có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: D
Số cách chọn \(10\) bông trong đó có đúng \(3\) bông đỏ là: \(C_8^3.C_{11}^7 = 18\,\,480\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Phương trình chính tắc của \[\left( P \right)\] có dạng: \[{y^2} = 2px\left( {p > 0} \right)\]
Vì \[\left( P \right)\] có đường chuẩn \[\Delta :x + 4 = 0\] nên \[\frac{p}{2} = 4 \Leftrightarrow \;p = 8\].
Do đó phương trình chính tắc của \[\left( P \right)\] là \[{y^2} = 16x\].
Gọi \[M\left( {{x_0};\,{y_0}} \right) \in \left( P \right)\], ta có:
\[d\left( {M;\,\Delta } \right) = MF = 5\]
\[ \Leftrightarrow \frac{{\left| {{x_0} + 4} \right|}}{{\sqrt {{1^2} + {0^2}} }} = 5\]
\[ \Leftrightarrow \left| {{x_0} + 4} \right| = 5\]
\[ \Leftrightarrow \left[ \begin{array}{l}{x_0} + 4 = 5\\{x_0} + 4 = - 5\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{x_0} = 1\\{x_0} = - 9\end{array} \right.\]
+) Với \[{x_0} = 1\] có \[{y_0}^2 = 16.1 = 16 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{y_0} = - 4}\\{{y_0} = 4}\end{array}} \right.\]
+) Với \[{x_0} = - 9\] có \[{y_0}^2 = 16.\left( {--9} \right) = --144\](vô lí).
Vậy \[M\left( {1;\,4} \right)\] hoặc \[M\left( {1;\, - 4} \right)\].
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Khi hai đường thẳng có từ hai điểm chung thì chúng trùng nhau. Như vậy bài toán trở thành tìm đường thẳng trùng với đường thẳng đã biết. Ta có:
\[d:\left\{ \begin{array}{l}x = t\\y = - 1\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{{\vec u}_d} = \left( {1;\,0} \right)\\A\left( {0;\, - 1} \right) \in d\end{array} \right.\].
Vậy \[d'\] là đường thẳng đi qua \[A\left( {1;\,0} \right)\] và có VTCP cùng phương với \[{\vec u_d} = \left( {1;\,0} \right)\]. Suy ra chọn D.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.