Câu hỏi:

02/01/2026 28 Lưu

Từ các chữ số \(0;\,\,1;\,\,2;\,\,3;\,\,4;\,\,5\). Có bao nhiêu số tự nhiên có ba chữ số khác nhau chia hết cho 6?

A. \[16\];   
B. \[4\]; 
C. \[20\]; 
D. \[6\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Gọi số cần tìm là \(\overline {abc} \,\,\left( {a \ne 0} \right)\)

Để số đó chia hết cho \(6\) thì số đó vừa chia hết cho \(2\) và \(3\).

Do đó số cần tìm là số chẵn nên \(c \in \left\{ {0;2;4} \right\}\).

+) TH1 \(c = 0\):

Ta có các bộ số có tổng chia hết cho \(3\) là:

\(\left( {0;\,\,1;\,\,2} \right),\,\left( {0;\,\,1;\,\,5} \right),\,\,\left( {0;\,\,2;\,\,4} \right),\,\,\left( {0;\,\,4;\,\,5} \right)\).

Do đó có \(1 + 1 + 1 + 1 = 4\) số.

+) TH2 \(c = 2\):

Ta có các bộ số có tổng chia hết cho \(3\) là:

\(\left( {0;\,\,1;\,\,2} \right),\,\,\left( {0;\,\,2;\,\,4} \right),\,\,\left( {1;\,\,2;\,\,3} \right),\,\left( {2;3;4} \right)\).

Do đó có \(1 + 1 + 2! + 2! = 6\) số.

+) TH3 \(c = 4\):

Ta có các bộ số có tổng chia hết cho \(3\) là:

\(\,\left( {0;\,\,2;\,\,4} \right),\,\,\left( {0;5;4} \right),\,\,\left( {2;3;4} \right),\left( {3;4;5} \right)\).

Do đó có \(1 + 1 + 2! + 2! = 6\) số.

Vậy \(4 + 6 + 6 = 16\) số.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Số cách chọn \(10\) bông trong đó có đúng \(3\) bông đỏ là: \(C_8^3.C_{11}^7 = 18\,\,480\).

Câu 2

A. \[M\left( {--1;\,4} \right)\] hoặc \[M\left( {1;\, - 4} \right)\]; 
B. \[M\left( {1;\,4} \right)\] hoặc \[M\left( {1;\, - 4} \right)\];
C. \[M\left( {1;\,2} \right)\] hoặc \[M\left( {1;\, - 2} \right)\];    
D. \[M\left( {1;\,4} \right)\] hoặc \[M\left( { - 1;\,4} \right)\].

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Phương trình chính tắc của \[\left( P \right)\] có dạng: \[{y^2} = 2px\left( {p > 0} \right)\]

Vì \[\left( P \right)\] có đường chuẩn \[\Delta :x + 4 = 0\] nên \[\frac{p}{2} = 4 \Leftrightarrow \;p = 8\].

Do đó phương trình chính tắc của \[\left( P \right)\] là \[{y^2} = 16x\].

Gọi \[M\left( {{x_0};\,{y_0}} \right) \in \left( P \right)\], ta có:

\[d\left( {M;\,\Delta } \right) = MF = 5\]

\[ \Leftrightarrow \frac{{\left| {{x_0} + 4} \right|}}{{\sqrt {{1^2} + {0^2}} }} = 5\]

\[ \Leftrightarrow \left| {{x_0} + 4} \right| = 5\]

\[ \Leftrightarrow \left[ \begin{array}{l}{x_0} + 4 = 5\\{x_0} + 4 =  - 5\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{x_0} = 1\\{x_0} =  - 9\end{array} \right.\]

+) Với \[{x_0} = 1\] có \[{y_0}^2 = 16.1 = 16 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{y_0} =  - 4}\\{{y_0} = 4}\end{array}} \right.\]

+) Với \[{x_0} =  - 9\] có \[{y_0}^2 = 16.\left( {--9} \right) = --144\](vô lí).

Vậy \[M\left( {1;\,4} \right)\] hoặc \[M\left( {1;\, - 4} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[\left\{ \begin{array}{l}a < 0\\\Delta  < 0\end{array} \right.\];  
B. \[\left\{ \begin{array}{l}a < 0\\\Delta  \le 0\end{array} \right.\];     
C. \[\left\{ \begin{array}{l}a > 0\\\Delta  \le 0\end{array} \right.\];   
D. \[\left\{ \begin{array}{l}a > 0\\\Delta  < 0\end{array} \right.\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Trùng nhau; 
B. Vuông góc với nhau;
C. Song song; 
D. Cắt nhau nhưng không vuông góc.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[216{a^4} + 96{a^3} + 81{a^2}\];
B. \[216{a^4} + 216{a^3} + 96{a^2}\];
C. \[81{a^4} + 216{a^3} + 96{a^2}\];   
D. \[81{a^4} + 216{a^3} + 216{a^2}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[C_5^3.2\];           
B. \[ - C_5^3.2\];        
C. \[C_5^2{.2^2}\];    
D. \[ - C_5^2{.2^2}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP