II. TỰ LUẬN
Trong mặt phẳng tọa độ \[Oxy\], cho hai đường thẳng \[d:x + 2y - 3 = 0\] và \[\Delta :x + 3y - 5 = 0\]. Viết phương trình của \[\left( C \right)\], biết bán kính bằng \[\frac{{2\sqrt {10} }}{5}\], có tâm thuộc \[d\] và tiếp xúc với \[\Delta \].
II. TỰ LUẬN
Trong mặt phẳng tọa độ \[Oxy\], cho hai đường thẳng \[d:x + 2y - 3 = 0\] và \[\Delta :x + 3y - 5 = 0\]. Viết phương trình của \[\left( C \right)\], biết bán kính bằng \[\frac{{2\sqrt {10} }}{5}\], có tâm thuộc \[d\] và tiếp xúc với \[\Delta \].
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 2 Toán 10 Kết nối tri thức có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Gọi \[I\left( { - 2t + 3;\,t} \right) \in d\] là tâm của đường tròn \[\left( C \right)\].
Theo giả thiết, ta có:
\[d\left( {I,\,\Delta } \right) = R \Leftrightarrow \frac{{\left| { - 2t + 3 + 3t - 5} \right|}}{{\sqrt {{1^2} + {3^2}} }} = \frac{{2\sqrt {10} }}{5} \Leftrightarrow \frac{{\left| {t - 2} \right|}}{{\sqrt {{1^2} + {3^2}} }} = \frac{{2\sqrt {10} }}{5} \Leftrightarrow \left[ \begin{array}{l}t = 6\\t = - 2\end{array} \right.\]
+) Với \[t = 6 \Rightarrow I\left( { - 9;\,6} \right)\], mà \[R = \frac{{2\sqrt {10} }}{5}\] nên phương trình đường tròn là \[\left( C \right):{\left( {x + 9} \right)^2} + {\left( {y - 6} \right)^2} = \frac{8}{5}\].
+) Với \[t = - 2 \Rightarrow I\left( {7;\, - 2} \right)\], mà \[R = \frac{{2\sqrt {10} }}{5}\] nên phương trình đường tròn là \[\left( C \right):{\left( {x - 7} \right)^2} + {\left( {y + 2} \right)^2} = \frac{8}{5}\].
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Số cách chọn \(10\) bông trong đó có đúng \(3\) bông đỏ là: \(C_8^3.C_{11}^7 = 18\,\,480\).
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Phương trình chính tắc của \[\left( P \right)\] có dạng: \[{y^2} = 2px\left( {p > 0} \right)\]
Vì \[\left( P \right)\] có đường chuẩn \[\Delta :x + 4 = 0\] nên \[\frac{p}{2} = 4 \Leftrightarrow \;p = 8\].
Do đó phương trình chính tắc của \[\left( P \right)\] là \[{y^2} = 16x\].
Gọi \[M\left( {{x_0};\,{y_0}} \right) \in \left( P \right)\], ta có:
\[d\left( {M;\,\Delta } \right) = MF = 5\]
\[ \Leftrightarrow \frac{{\left| {{x_0} + 4} \right|}}{{\sqrt {{1^2} + {0^2}} }} = 5\]
\[ \Leftrightarrow \left| {{x_0} + 4} \right| = 5\]
\[ \Leftrightarrow \left[ \begin{array}{l}{x_0} + 4 = 5\\{x_0} + 4 = - 5\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{x_0} = 1\\{x_0} = - 9\end{array} \right.\]
+) Với \[{x_0} = 1\] có \[{y_0}^2 = 16.1 = 16 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{y_0} = - 4}\\{{y_0} = 4}\end{array}} \right.\]
+) Với \[{x_0} = - 9\] có \[{y_0}^2 = 16.\left( {--9} \right) = --144\](vô lí).
Vậy \[M\left( {1;\,4} \right)\] hoặc \[M\left( {1;\, - 4} \right)\].
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.