Câu hỏi:

05/01/2026 8 Lưu

Cho hai đường thẳng song song \({d_1}\) và \({d_2}\). Trên đường thẳng \({d_1}\) có \(7\) điểm, trên \({d_2}\)có \(10\) điểm. Có tất cả bao nhiêu tam giác được tạo thành nếu các đỉnh lấy từ các điểm đã cho?

A. \(680\); 
B. \(155\); 
C. \(525\);
D. \(560\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

Việc lấy 3 điểm từ các điểm đã cho để tạo thành một tam giác được chia thành hai phương án:

- Phương án 1: Lấy \(2\) điểm trong \(7\)điểm trên đường thẳng \({d_1}\) và \(1\) điểm trong \(10\) điểm trên đường thẳng \({d_2}\) có \(C_7^2.C_{10}^1\) cách.

- Phương án 2: Lấy \(1\) điểm trong \(7\)điểm trên đường thẳng \({d_1}\) và \(2\) điểm trong \(10\) điểm trên đường thẳng \({d_2}\) có \(C_7^1.C_{10}^2\) cách.

Vậy có tất cả \(C_7^2.C_{10}^1 + C_7^1.C_{10}^2 = 525\) tam giác.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(0^\circ \); 
B. \(180^\circ \);
C. \(90^\circ \); 
D. \(1^\circ \).

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Góc giữa hai đường thẳng song song được quy ước bằng \(0^\circ \).

Câu 2

A. \(\left\{ \begin{array}{l}x = 1 + t\\y =  - 1 + 4t\end{array} \right.\);  
B. \(\left\{ \begin{array}{l}x = 1 + t\\y =  - 1 + 2t\end{array} \right.\);   
C. \(\left\{ \begin{array}{l}x = 2 + t\\y = 3 - t\end{array} \right.\);   
D. \(\left\{ \begin{array}{l}x = 2 + t\\y = 3 - 4t\end{array} \right.\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Ta có: \(\overrightarrow {AB}  = \left( {1;\,\,4} \right)\)

Đường thẳng \(AB\) nhận \(\overrightarrow {AB}  = \left( {1;\,\,4} \right)\) làm vectơ chỉ phương và đi qua điểm \(A\left( {1;\,\, - 1} \right)\) nên ta có phương trình đường thẳng \(AB\) là: \(\left\{ \begin{array}{l}x = 1 + t\\y =  - 1 + 4t\end{array} \right.\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP