Câu hỏi:

07/01/2026 11 Lưu

Đường tròn tâm \(I\left( {1;\,\,4} \right)\) và đi qua điểm \(B\left( {2;6} \right)\) có phương trình là

A. \({\left( {x + 1} \right)^2} + {\left( {y + 4} \right)^2} = 5\);  
B. \({\left( {x - 1} \right)^2} + {\left( {y - 4} \right)^2} = \sqrt 5 \);    
C. \({\left( {x + 1} \right)^2} + {\left( {y + 4} \right)^2} = \sqrt 5 \);  
D. \({\left( {x - 1} \right)^2} + {\left( {y - 4} \right)^2} = 5\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D

Ta có \(R = IB = \sqrt {{{\left( {2 - 1} \right)}^2} + {{\left( {6 - 4} \right)}^2}}  = \sqrt 5 \).

Đường tròn có tâm \(I\left( {1;\,\,4} \right)\) và đi qua điểm \(R = \sqrt 5 \) có phương trình là:

\({\left( {x - 1} \right)^2} + {\left( {y - 4} \right)^2} = 5\)

Vậy ta chọn phương án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(2!.3!\);  
B. \(2!\,\, + 3!\);  
C. \(5!\);  
D. \(5C5\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Cách xếp \(5\) bạn gồm \(2\)nam và \(3\) nữ thành một hàng dọc là một hoán vị của \(5\) nên ta có: \(5!\) cách.

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Số tập con có hai phần tử của tập \(A\) là: \(C_{10}^2\).

Do đó \(n\left( \Omega  \right) = C_{10}^2 = 45\).

Số các tập con của tập \(A\) có hai phần tử và luôn có phần tử \(9\) có: \(1.C_9^1 = 9\).

Gọi M là biến cố tập con có hai phần tử luôn có phần tử 9.

\( \Rightarrow n\left( M \right) = 9\)

\( \Rightarrow \frac{{n\left( M \right)}}{{n\left( \Omega  \right)}} = \frac{9}{{45}} = \frac{1}{5}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(x + 2y = 9\);  
B. \( - 3x - 6y + 7 = 0\);
C. \(x - 2y - 19 = 0\); 
D. \(\left\{ \begin{array}{l}x = 1 + 2t\\y =  - 1 - t\end{array} \right.\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP