Đường tròn tâm \(I\left( {1;\,\,4} \right)\) và đi qua điểm \(B\left( {2;6} \right)\) có phương trình là
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 2 Toán 10 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: D
Ta có \(R = IB = \sqrt {{{\left( {2 - 1} \right)}^2} + {{\left( {6 - 4} \right)}^2}} = \sqrt 5 \).
Đường tròn có tâm \(I\left( {1;\,\,4} \right)\) và đi qua điểm \(R = \sqrt 5 \) có phương trình là:
\({\left( {x - 1} \right)^2} + {\left( {y - 4} \right)^2} = 5\)
Vậy ta chọn phương án D.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Cách xếp \(5\) bạn gồm \(2\)nam và \(3\) nữ thành một hàng dọc là một hoán vị của \(5\) nên ta có: \(5!\) cách.
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Số tập con có hai phần tử của tập \(A\) là: \(C_{10}^2\).
Do đó \(n\left( \Omega \right) = C_{10}^2 = 45\).
Số các tập con của tập \(A\) có hai phần tử và luôn có phần tử \(9\) có: \(1.C_9^1 = 9\).
Gọi M là biến cố tập con có hai phần tử luôn có phần tử 9.
\( \Rightarrow n\left( M \right) = 9\)
\( \Rightarrow \frac{{n\left( M \right)}}{{n\left( \Omega \right)}} = \frac{9}{{45}} = \frac{1}{5}\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.