Câu hỏi:

07/01/2026 6 Lưu

Trong một tuần vào dịp nghỉ hè, bạn An dự định mỗi ngày đi thăm một người bạn trong \(12\) người bạn của mình. Hỏi bạn An có thể lập được bao nhiêu kế hoạch đi thăm bạn của mình (thăm một bạn không quá một lần)?

A. \(3\,\,991\,\,680\);     
B. \(479\,\,001\,\,600\); 
C. \(35\,\,831\,\,808\);   
D. \(5\,\,040\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Theo đề, ta có mỗi tuần có \(7\) ngày, mỗi ngày bạn An đi thăm một người bạn (thăm một bạn không quá một lần).

⦁ Có \(12\) cách chọn một người bạn để đi thăm vào ngày thứ nhất.

⦁ Có \(11\) cách chọn một người bạn để đi thăm vào ngày thứ hai.

⦁ Có \(10\) cách chọn một người bạn để đi thăm vào ngày thứ ba.

⦁ Có \(9\) cách chọn một người bạn để đi thăm vào ngày thứ tư.

⦁ Có \(8\) cách chọn một người bạn để đi thăm vào ngày thứ năm.

⦁ Có \(7\) cách chọn một người bạn để đi thăm vào ngày thứ sáu.

⦁ Có \(6\) cách chọn một người bạn để đi thăm vào ngày thứ bảy.

Theo quy tắc nhân, ta có số cách lập kế hoạch của bạn An là:

\(12.11.10.9.8.7.6 = 3\,\,991\,\,680\).

Vậy ta chọn phương án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Gọi số học sinh nữ của lớp là \(n\left( {n \in {\mathbb{N}^*},n \le 28} \right)\).

Suy ra số học sinh nam là \(30 - n\).

Không gian mẫu là chọn bất kì \(3\)  học sinh từ \(30\) học sinh.

Suy ra số phần tử của không gian mẫu là \(n\left( \Omega  \right) = C_{30}^3\).

Gọi \(A\) là biến cố Chọn được \(2\) học sinh nam và \(1\)  học sinh nữ.

+ Chọn \(2\) nam trong \(30 - n\) nam, có \(C_{30 - n}^2\) cách.

+ Chọn \(1\) nữ trong \(n\) nữ, có \(C_n^1\) cách.

Suy ra số phần tử của biến cố \(A\) là \(n\left( A \right) = C_{30 - n}^2.C_n^1\).

Do đó xác suất của biến cố \(A\) là \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{{C_{30 - n}^2.C_n^1}}{{C_{30}^3}}\) .

Theo giả thiết, ta có \(P\left( A \right) = \frac{{12}}{{29}} \Leftrightarrow \frac{{C_{30 - n}^2.C_n^1}}{{C_{30}^3}} = \frac{{12}}{{29}}\)

\( \Leftrightarrow \frac{{\left( {30 - n} \right)\left( {29 - n} \right)\left( {28 - n} \right)!.n}}{{2!.\left( {28 - n} \right)!}} = 1680\)

\( \Leftrightarrow \left( {30 - n} \right)\left( {29 - n} \right).n = 3360 \Leftrightarrow {n^3} - 59{n^2} + 870n - 3360 = 0\) \( \Leftrightarrow \left[ \begin{array}{l}n \approx 38,82\\n = 14\\n \approx 6,18\end{array} \right.\)

Vì \(n \in {\mathbb{N}^*} \Rightarrow n = 14\)

Vậy số học sinh nữ của lớp là \(14\) học sinh.

Lời giải

Hướng dẫn giải

a) Ta có: \(\overrightarrow {AB}  = \left( {4; - 2} \right) = 2\left( {2; - 1} \right)\) là vectơ chỉ phương của đường thẳng \(AB\).

Khi đó phương trình đường thẳng \(AB\) nhận  \(\left( {1;2} \right)\) làm vectơ pháp tuyến có phương trình là: \(1\left( {x + 1} \right) + 2\left( {y - 3} \right) = 0 \Leftrightarrow x + 2y - 5 = 0\).

b) Ta có: \(A \in {d_1}\) nên \(A\left( {3;a} \right)\), \(\left( {a < 3} \right)\).

Vì tam giác \(ABC\) vuông tại \(B\) mà \(ABC\) nội tiếp đường tròn nên \(AC\) là đường kính.

Đường thẳng \({d_1}:x = 3\) có một vectơ pháp tuyến là \(\left( {1;0} \right)\) nên có một vectơ chỉ phương là \(\left( {0;1} \right)\).

Đường thẳng \({d_2}:x - y + 3 = 0\) có một vectơ pháp tuyến là \(\left( {1; - 1} \right)\) nên có một vectơ chỉ phương là \(\left( {1;1} \right)\).

Phương trình đường thẳng \(AC\) nhận \(\left( {0;1} \right)\) làm vectơ pháp tuyến có phương trình là: \(y = a\).

Phương trình đường thẳng \(AB\) nhận \(\left( {1;1} \right)\) làm vectơ pháp tuyến có phương trình là: \(\left( {x - 3} \right) + \left( {y - a} \right) = 0 \Leftrightarrow x + y = a + 3\).

Điểm \(C\) là giao của đường thẳng \(AC\) và \({d_2}\) nên ta có:

\(\left\{ \begin{array}{l}y = a\\x - y + 3 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = a - 3\\y = a\end{array} \right. \Rightarrow C\left( {a - 3;a} \right)\).

Điểm \(B\) là giao của đường thẳng \(AB\) và \({d_2}\) nên ta có:

\(\left\{ \begin{array}{l}x + y - a - 3 = 0\\x - y + 3 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \frac{a}{2}\\y = \frac{a}{2} + 3\end{array} \right. \Rightarrow B\left( {\frac{a}{2};\frac{a}{2} + 3} \right)\).

Khi đó \(\overrightarrow {AB} \left( {\frac{a}{2} - 3; - \frac{a}{2} + 3} \right) \Rightarrow AB = \left| {\frac{a}{2} - 3} \right|\).

\(\overrightarrow {BC} \left( {\frac{a}{2} - 3;\frac{a}{2} - 3} \right) \Rightarrow BC = \left| {\frac{a}{2} - 3} \right|\).

Diện  tích tam giác \(ABC\) bằng \(\frac{1}{2}AB.BC = \frac{1}{2}{\left( {\frac{a}{2} - 3} \right)^2} = 4 \Leftrightarrow \left[ \begin{array}{l}\frac{a}{2} - 3 = 2\sqrt 2 \\\frac{a}{2} - 3 =  - 2\sqrt 2 \end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}a = 2\left( {3 + 2\sqrt 2 } \right)\\a = 2\left( {3 - 2\sqrt 2 } \right)\end{array} \right.\)

\( \Rightarrow a = 2\left( {3 - 2\sqrt 2 } \right)\) thỏa mãn điều kiện.

Vậy tọa độ điểm \(A\left( {3;2\left( {3 - 2\sqrt 2 } \right)} \right)\).

Câu 4

A. \(0\);  
B. \(1\); 
C. \(2\); 
D. \(3\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(m \in \left[ { - 4;4} \right]\);  
B. \(m =  - 4\) hoặc \(m = 4\);
C. \(m <  - 4\);   
D. \(m > 4\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\overrightarrow n \left( {1;\, - 3} \right)\); 
B. \(\overrightarrow n \left( {2;\, - 3} \right)\); 
C. \(\overrightarrow n \left( { - 2;\,1} \right)\);  
D. \(\overrightarrow n \left( {1;2} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP