Câu hỏi:

07/01/2026 9 Lưu

Từ các chữ số \[3;{\rm{ 4}};{\rm{ 6}};{\rm{ 7}};{\rm{ 8}};{\rm{ 9}}\] có thể lập được bao nhiêu chữ số tự nhiên bé hơn \[100\]?

A. \[36\]; 
B. \[62\]; 
C. \[55\]; 
D. \[42\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D

Các số bé hơn \[100\] chính là các số có một chữ số và hai chữ số được hình thành từ tập \[A = \left\{ {3;{\rm{ 4}};{\rm{ 6}};{\rm{ 7}};{\rm{ 8}};{\rm{ 9}}} \right\}.\] Từ tập \[A\] có thể lập được \[6\] số có một chữ số.

Gọi số có hai chữ số có dạng \[\overline {ab} \] với \[\left( {a,b} \right) \in A.\]

Trong đó:

\[a\] có \[6\] cách chọn (vì \(a\) có thể chọn một trong các số  \[3;{\rm{ 4}};{\rm{ 6}};{\rm{ 7}};{\rm{ 8}};{\rm{ 9}}\]);

\[b\] có \[6\] cách chọn (vì \(b\) có thể chọn một trong các số  \[3;{\rm{ 4}};{\rm{ 6}};{\rm{ 7}};{\rm{ 8}};{\rm{ 9}}\]).

Như vậy, ta có \[6.6 = 36\] số có hai chữ số.

Vậy, từ \[A\] có thể lập được \[36 + 6 = 42\] số tự nhiên bé hơn \[100\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Gọi số học sinh nữ của lớp là \(n\left( {n \in {\mathbb{N}^*},n \le 28} \right)\).

Suy ra số học sinh nam là \(30 - n\).

Không gian mẫu là chọn bất kì \(3\)  học sinh từ \(30\) học sinh.

Suy ra số phần tử của không gian mẫu là \(n\left( \Omega  \right) = C_{30}^3\).

Gọi \(A\) là biến cố Chọn được \(2\) học sinh nam và \(1\)  học sinh nữ.

+ Chọn \(2\) nam trong \(30 - n\) nam, có \(C_{30 - n}^2\) cách.

+ Chọn \(1\) nữ trong \(n\) nữ, có \(C_n^1\) cách.

Suy ra số phần tử của biến cố \(A\) là \(n\left( A \right) = C_{30 - n}^2.C_n^1\).

Do đó xác suất của biến cố \(A\) là \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{{C_{30 - n}^2.C_n^1}}{{C_{30}^3}}\) .

Theo giả thiết, ta có \(P\left( A \right) = \frac{{12}}{{29}} \Leftrightarrow \frac{{C_{30 - n}^2.C_n^1}}{{C_{30}^3}} = \frac{{12}}{{29}}\)

\( \Leftrightarrow \frac{{\left( {30 - n} \right)\left( {29 - n} \right)\left( {28 - n} \right)!.n}}{{2!.\left( {28 - n} \right)!}} = 1680\)

\( \Leftrightarrow \left( {30 - n} \right)\left( {29 - n} \right).n = 3360 \Leftrightarrow {n^3} - 59{n^2} + 870n - 3360 = 0\) \( \Leftrightarrow \left[ \begin{array}{l}n \approx 38,82\\n = 14\\n \approx 6,18\end{array} \right.\)

Vì \(n \in {\mathbb{N}^*} \Rightarrow n = 14\)

Vậy số học sinh nữ của lớp là \(14\) học sinh.

Lời giải

Hướng dẫn giải

a) Ta có: \(\overrightarrow {AB}  = \left( {4; - 2} \right) = 2\left( {2; - 1} \right)\) là vectơ chỉ phương của đường thẳng \(AB\).

Khi đó phương trình đường thẳng \(AB\) nhận  \(\left( {1;2} \right)\) làm vectơ pháp tuyến có phương trình là: \(1\left( {x + 1} \right) + 2\left( {y - 3} \right) = 0 \Leftrightarrow x + 2y - 5 = 0\).

b) Ta có: \(A \in {d_1}\) nên \(A\left( {3;a} \right)\), \(\left( {a < 3} \right)\).

Vì tam giác \(ABC\) vuông tại \(B\) mà \(ABC\) nội tiếp đường tròn nên \(AC\) là đường kính.

Đường thẳng \({d_1}:x = 3\) có một vectơ pháp tuyến là \(\left( {1;0} \right)\) nên có một vectơ chỉ phương là \(\left( {0;1} \right)\).

Đường thẳng \({d_2}:x - y + 3 = 0\) có một vectơ pháp tuyến là \(\left( {1; - 1} \right)\) nên có một vectơ chỉ phương là \(\left( {1;1} \right)\).

Phương trình đường thẳng \(AC\) nhận \(\left( {0;1} \right)\) làm vectơ pháp tuyến có phương trình là: \(y = a\).

Phương trình đường thẳng \(AB\) nhận \(\left( {1;1} \right)\) làm vectơ pháp tuyến có phương trình là: \(\left( {x - 3} \right) + \left( {y - a} \right) = 0 \Leftrightarrow x + y = a + 3\).

Điểm \(C\) là giao của đường thẳng \(AC\) và \({d_2}\) nên ta có:

\(\left\{ \begin{array}{l}y = a\\x - y + 3 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = a - 3\\y = a\end{array} \right. \Rightarrow C\left( {a - 3;a} \right)\).

Điểm \(B\) là giao của đường thẳng \(AB\) và \({d_2}\) nên ta có:

\(\left\{ \begin{array}{l}x + y - a - 3 = 0\\x - y + 3 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \frac{a}{2}\\y = \frac{a}{2} + 3\end{array} \right. \Rightarrow B\left( {\frac{a}{2};\frac{a}{2} + 3} \right)\).

Khi đó \(\overrightarrow {AB} \left( {\frac{a}{2} - 3; - \frac{a}{2} + 3} \right) \Rightarrow AB = \left| {\frac{a}{2} - 3} \right|\).

\(\overrightarrow {BC} \left( {\frac{a}{2} - 3;\frac{a}{2} - 3} \right) \Rightarrow BC = \left| {\frac{a}{2} - 3} \right|\).

Diện  tích tam giác \(ABC\) bằng \(\frac{1}{2}AB.BC = \frac{1}{2}{\left( {\frac{a}{2} - 3} \right)^2} = 4 \Leftrightarrow \left[ \begin{array}{l}\frac{a}{2} - 3 = 2\sqrt 2 \\\frac{a}{2} - 3 =  - 2\sqrt 2 \end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}a = 2\left( {3 + 2\sqrt 2 } \right)\\a = 2\left( {3 - 2\sqrt 2 } \right)\end{array} \right.\)

\( \Rightarrow a = 2\left( {3 - 2\sqrt 2 } \right)\) thỏa mãn điều kiện.

Vậy tọa độ điểm \(A\left( {3;2\left( {3 - 2\sqrt 2 } \right)} \right)\).

Câu 4

A. \(0\);  
B. \(1\); 
C. \(2\); 
D. \(3\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(m \in \left[ { - 4;4} \right]\);  
B. \(m =  - 4\) hoặc \(m = 4\);
C. \(m <  - 4\);   
D. \(m > 4\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\overrightarrow n \left( {1;\, - 3} \right)\); 
B. \(\overrightarrow n \left( {2;\, - 3} \right)\); 
C. \(\overrightarrow n \left( { - 2;\,1} \right)\);  
D. \(\overrightarrow n \left( {1;2} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP