Câu hỏi:

07/01/2026 21 Lưu

Một người vào cửa hàng ăn, người đó chọn thực đơn gồm một món chính trong năm món chính, một loại quả tráng miệng trong năm loại quả tráng miệng và một loại nước uống trong ba loại nước uống. Số cách chọn thực đơn là

A. \(25\);
B. \(75\); 
C. \(700\);
D. \(15\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Việc chọn thực đơn gồm ba công đoạn:

Công đoạn 1: Chọn một món chính, có \(5\) cách chọn.

Công đoạn 2: Chọn một loại quả tráng miệng, có \(5\) cách chọn.

Công đoạn 3: chọn một loại nước uống, có \(3\) cách chọn.

Theo quy tắc nhân, ta có tất cả \(5.5.3 = 75\) cách chọn thực đơn.

Vậy ta chọn phương án B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Ta có: \(M(4;2) \in d \Leftrightarrow 4 + 2b + c = 0 \Rightarrow c =  - 4 - 2b.\)

\(d(A,d) = \frac{{\left| {1 + c} \right|}}{{\sqrt {1 + {b^2}} }} = \frac{{3\sqrt {10} }}{{10}} \Leftrightarrow 10{(1 + c)^2} = 9(1 + {b^2})\)(1)

Thay \(c =  - 4 - 2b\) vào phương trình (1) ta có: \[31{b^2} + 120b + 81 = 0 \Leftrightarrow \left[ \begin{array}{l}b =  - 3\\b =  - \frac{{27}}{{31}}\end{array} \right.\]

Vì \(b\) là số nguyên nên \(b =  - 3,c = 2 \Rightarrow b + c =  - 1\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Ta xét khai triển \({\left( {\frac{3}{x} + 2x} \right)^4}\) ( với \(x \ne 0\)) có số hạng tổng quát là

\({\left( {\frac{3}{x} + 2x} \right)^4} = C_4^0.{\left( {\frac{3}{x}} \right)^4} + C_4^1.{\left( {\frac{3}{x}} \right)^3}.\left( {2x} \right) + C_4^2.{\left( {\frac{3}{x}} \right)^2}.{\left( {2x} \right)^2} + C_4^3.\left( {\frac{3}{x}} \right).{\left( {2x} \right)^3} + C_4^4.{\left( {2x} \right)^4}\)

\( = \frac{{81}}{{{x^4}}} + \frac{{216}}{{{x^2}}} + 216 + 96{x^2} + 16{x^4}\).

Vậy số hạng không chứa \[x\] trong khai triển là \[216\].

Câu 4

A. \(3x + 4y + 5\sqrt 2  - 11 = 0\), \(3x + 4y - 5\sqrt 2  + 11 = 0\);
B. \(3x + 4y + 5\sqrt 2  - 11 = 0\), \(3x + 4y - 5\sqrt 2  - 11 = 0\);
C. \(3x + 4y + 5\sqrt 2  - 11 = 0\), \(3x + 4y + 5\sqrt 2  + 11 = 0\);
D. \(3x + 4y - 5\sqrt 2  + 11 = 0\), \(3x + 4y - 5\sqrt 2  - 11 = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[{x^5} + 1620{x^4} + 4320{x^3} + 5760{x^2} + 3840x + 1024\];
B. \[243{x^5} + 405{x^4} + 4320{x^3} + 5760{x^2} + 3840x + 1024\];
C. \[243{x^5} - 1620{x^4} + 4320{x^3} - 5760{x^2} + 3840x - 1024\];
D. \[243{x^5} + 1620{x^4} + 4320{x^3} + 5760{x^2} + 3840x + 1024\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP