Có \(4\) hành khách bước lên một đoàn tàu gồm \(4\) toa. Mỗi hành khách độc lập với nhau và chọn ngẫu nhiên một toa. Xác suất để \(1\) toa có \(3\) người, \(1\) toa có \(1\) người và \(2\) toa còn lại không có ai là
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Không gian mẫu của phép thử trên là số cách xếp \(4\) hành khách lên \(4\) toa tàu.
Vì chọn mỗi hành khách có \(4\) cách chọn toa nên ta có \({4^4}\) cách xếp.
Suy ra số phần tử của không gian mẫu là \(n\left( \Omega \right) = {4^4}\).
Gọi biến cố \(A\): “\(1\) toa có \(3\) người, \(1\) toa có \(1\) người và \(2\) toa còn lại không có ai”.
Để tìm số phần tử của biến cố \(A\), ta chia thành hai giai đoạn như sau:
Giai đoạn 1: Chọn \(3\) hành khách trong số \(4\) hành khách và chọn \(1\) toa trong số \(4\) toa.
Sau đó xếp lên toa đó \(3\) hành khách vừa chọn.
Khi đó ta có \(C_4^3.C_4^1\) cách.
Giai đoạn 2: Chọn \(1\) toa trong số \(3\) toa còn lại và xếp \(1\) hành khách còn lại lên toa đó.
Suy ra có \(C_3^1\) cách. Hiển nhiên khi đó \(2\) toa còn lại sẽ không có hành khách nào.
Theo quy tắc nhân, ta có \(n\left( A \right) = C_4^3.C_4^1.C_3^1\).
Vậy xác suất của biến cố \(A\) là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{C_4^3.C_4^1.C_3^1}}{{{4^4}}} = \frac{3}{{16}}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Gọi số học sinh nữ của lớp là \(n\left( {n \in {\mathbb{N}^*},n \le 28} \right)\).
Suy ra số học sinh nam là \(30 - n\).
Không gian mẫu là chọn bất kì \(3\) học sinh từ \(30\) học sinh.
Suy ra số phần tử của không gian mẫu là \(n\left( \Omega \right) = C_{30}^3\).
Gọi \(A\) là biến cố
Chọn được \(2\) học sinh nam và \(1\) học sinh nữ
.
+ Chọn \(2\) nam trong \(30 - n\) nam, có \(C_{30 - n}^2\) cách.
+ Chọn \(1\) nữ trong \(n\) nữ, có \(C_n^1\) cách.
Suy ra số phần tử của biến cố \(A\) là \(n\left( A \right) = C_{30 - n}^2.C_n^1\).
Do đó xác suất của biến cố \(A\) là \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{C_{30 - n}^2.C_n^1}}{{C_{30}^3}}\) .
Theo giả thiết, ta có \(P\left( A \right) = \frac{{12}}{{29}} \Leftrightarrow \frac{{C_{30 - n}^2.C_n^1}}{{C_{30}^3}} = \frac{{12}}{{29}}\)
\( \Leftrightarrow \frac{{\left( {30 - n} \right)\left( {29 - n} \right)\left( {28 - n} \right)!.n}}{{2!.\left( {28 - n} \right)!}} = 1680\)
\( \Leftrightarrow \left( {30 - n} \right)\left( {29 - n} \right).n = 3360 \Leftrightarrow {n^3} - 59{n^2} + 870n - 3360 = 0\) \( \Leftrightarrow \left[ \begin{array}{l}n \approx 38,82\\n = 14\\n \approx 6,18\end{array} \right.\)
Vì \(n \in {\mathbb{N}^*} \Rightarrow n = 14\)
Vậy số học sinh nữ của lớp là \(14\) học sinh.
Lời giải
Hướng dẫn giải
a) Ta có: \(\overrightarrow {AB} = \left( {4; - 2} \right) = 2\left( {2; - 1} \right)\) là vectơ chỉ phương của đường thẳng \(AB\).
Khi đó phương trình đường thẳng \(AB\) nhận \(\left( {1;2} \right)\) làm vectơ pháp tuyến có phương trình là: \(1\left( {x + 1} \right) + 2\left( {y - 3} \right) = 0 \Leftrightarrow x + 2y - 5 = 0\).
b) Ta có: \(A \in {d_1}\) nên \(A\left( {3;a} \right)\), \(\left( {a < 3} \right)\).
Vì tam giác \(ABC\) vuông tại \(B\) mà \(ABC\) nội tiếp đường tròn nên \(AC\) là đường kính.
Đường thẳng \({d_1}:x = 3\) có một vectơ pháp tuyến là \(\left( {1;0} \right)\) nên có một vectơ chỉ phương là \(\left( {0;1} \right)\).
Đường thẳng \({d_2}:x - y + 3 = 0\) có một vectơ pháp tuyến là \(\left( {1; - 1} \right)\) nên có một vectơ chỉ phương là \(\left( {1;1} \right)\).
Phương trình đường thẳng \(AC\) nhận \(\left( {0;1} \right)\) làm vectơ pháp tuyến có phương trình là: \(y = a\).
Phương trình đường thẳng \(AB\) nhận \(\left( {1;1} \right)\) làm vectơ pháp tuyến có phương trình là: \(\left( {x - 3} \right) + \left( {y - a} \right) = 0 \Leftrightarrow x + y = a + 3\).
Điểm \(C\) là giao của đường thẳng \(AC\) và \({d_2}\) nên ta có:
\(\left\{ \begin{array}{l}y = a\\x - y + 3 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = a - 3\\y = a\end{array} \right. \Rightarrow C\left( {a - 3;a} \right)\).
Điểm \(B\) là giao của đường thẳng \(AB\) và \({d_2}\) nên ta có:
\(\left\{ \begin{array}{l}x + y - a - 3 = 0\\x - y + 3 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \frac{a}{2}\\y = \frac{a}{2} + 3\end{array} \right. \Rightarrow B\left( {\frac{a}{2};\frac{a}{2} + 3} \right)\).
Khi đó \(\overrightarrow {AB} \left( {\frac{a}{2} - 3; - \frac{a}{2} + 3} \right) \Rightarrow AB = \left| {\frac{a}{2} - 3} \right|\).
\(\overrightarrow {BC} \left( {\frac{a}{2} - 3;\frac{a}{2} - 3} \right) \Rightarrow BC = \left| {\frac{a}{2} - 3} \right|\).
Diện tích tam giác \(ABC\) bằng \(\frac{1}{2}AB.BC = \frac{1}{2}{\left( {\frac{a}{2} - 3} \right)^2} = 4 \Leftrightarrow \left[ \begin{array}{l}\frac{a}{2} - 3 = 2\sqrt 2 \\\frac{a}{2} - 3 = - 2\sqrt 2 \end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}a = 2\left( {3 + 2\sqrt 2 } \right)\\a = 2\left( {3 - 2\sqrt 2 } \right)\end{array} \right.\)
\( \Rightarrow a = 2\left( {3 - 2\sqrt 2 } \right)\) thỏa mãn điều kiện.
Vậy tọa độ điểm \(A\left( {3;2\left( {3 - 2\sqrt 2 } \right)} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.