Câu hỏi:

07/01/2026 13 Lưu

Với giá trị nào của \[m\] thì hai đường thẳng \[{d_1}:2x - 3y - 10 = 0\] và \[{d_2}:\left\{ {\begin{array}{*{20}{c}}{x = 2 - 3t}\\{y = 1 - 4mt}\end{array}} \right.\] vuông góc?

A. \[m = \frac{1}{2}\]; 
B. \[m = \frac{9}{8}\]; 
C. \[m =  - \frac{9}{8}\];  
D. \(m =  - \frac{5}{4}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

Ta có:

Đường thẳng \[{d_1}:2x - 3y - 10 = 0\] có vectơ pháp tuyến là \[{\vec n_1} = \left( {2; - 3} \right)\].

Đường thẳng \[{d_2}:\left\{ {\begin{array}{*{20}{c}}{x = 2 - 3t}\\{y = 1 - 4mt}\end{array}} \right.\] có vectơ chỉ phương là  \[\overrightarrow {{u_2}}  = \left( { - 3; - 4m} \right)\] nên vectơ pháp tuyến là \[\overrightarrow {{n_2}}  = \left( {4m; - 3} \right)\].

Để đường thẳng \({d_1} \bot {d_2}\) thì \(\overrightarrow {{n_1}} .\overrightarrow {{n_2}}  = 0 \Leftrightarrow 2.4m + \left( { - 3} \right).\left( { - 3} \right) = 0 \Leftrightarrow m =  - \frac{9}{8}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(x \in \left( { - \infty ;\, - 1} \right] \cup \left[ {5;\, + \infty } \right)\);
B. \(x \in \left[ { - 1;\,5} \right]\);  
C. \(x \in \left[ { - 5;\,1} \right]\);  
D. \(x \in \left( { - 5;\,1} \right)\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Dễ thấy \(f\left( x \right) =  - {x^2} - 4x + 5\) có \(\Delta  = 36 > 0,\,a =  - 1 < 0\)và có hai nghiệm phân biệt \({x_1} = 1;\,{x_2} =  - 5\). Do đó ta có bảng xét dấu \(f\left( x \right)\):

Cho tam thức bậc hai f (x) = -(x^2) - 4x +5. Khi đó f (x) > 0 khi (ảnh 1)

Suy ra \(f\left( x \right) > 0\) với mọi \(x \in \left( { - 5;1} \right)\) và \(f\left( x \right) < 0\) với mọi \(x \in \left( { - \infty ; - 5} \right) \cup \left( {1; + \infty } \right)\).

Vậy đáp án đúng là D.

Câu 2

A. \[10\];  
B. \[20\]; 
C. \[18\];   
D. \[22\].

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Cách tìm số giao điểm của \[5\] đường tròn phân biệt được chia làm \(2\) công đoạn:

- Công đoạn thứ 1: Chọn \(2\) đường tròn trong \[5\] đường tròn có \(C_5^2\) cách.

- Công đoạn thứ 2: Ứng với \(2\) đường tròn có tối đa \(2\) giao điểm.

Vậy số giao điểm tối đa của \[5\] đường tròn phân biệt là \[2.C_5^2 = 20\].

Câu 3

A. \[\overrightarrow n  = \left( {1; - 2} \right)\]; 
B. \[\overrightarrow n  = \left( {2;1} \right)\];  
C. \[\overrightarrow n  = \left( { - 2;3} \right)\]; 
D. \[\overrightarrow n  = \left( {1;3} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[\left( { - \infty ; - 108} \right)\];  
B. \[\left( { - \infty ;50} \right)\]; 
C. \[\left( {50;108} \right)\]; 
D. \[\left( {0;2} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\Omega  = \left\{ {21;\,\,41;\,\,51;\,\,15;\,\,25;\,\,45} \right\}\); 
B. \(\Omega  = \left\{ {01;\,\,41;\,\,51;\,\,05;\,\,15;\,\,25;\,\,45} \right\}\);
C. \(\Omega  = \left\{ {01;\,\,11;\,\,41;\,\,51;\,\,05;\,\,15;\,\,25;\,\,45;\,\,55} \right\}\); 
D. \(\Omega  = \left\{ {11;\,21;\,\,41;\,\,51;\,\,15;\,\,25;\,\,45;\,\,55} \right\}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP