Câu hỏi:

07/01/2026 6 Lưu

Phương trình đường tròn có tâm \(I\left( {1;2} \right)\) và bán kính \(R = 5\) là

A. \({x^2} + {y^2} - 2x - 4y - 20 = 0\); 
B. \({x^2} + {y^2} + 2x + 4y + 20 = 0\);
C. \({x^2} + {y^2} + 2x + 4y - 20 = 0\); 
D. \({x^2} + {y^2} - 2x - 4y + 20 = 0\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Đường tròn có tâm \(I\left( {1;2} \right)\) và bán kính \(R = 5\) nên có phương trình là

\({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} = {5^2} \Leftrightarrow {x^2} + {y^2} - 2x - 4y - 20 = 0\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(x \in \left( { - \infty ;\, - 1} \right] \cup \left[ {5;\, + \infty } \right)\);
B. \(x \in \left[ { - 1;\,5} \right]\);  
C. \(x \in \left[ { - 5;\,1} \right]\);  
D. \(x \in \left( { - 5;\,1} \right)\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Dễ thấy \(f\left( x \right) =  - {x^2} - 4x + 5\) có \(\Delta  = 36 > 0,\,a =  - 1 < 0\)và có hai nghiệm phân biệt \({x_1} = 1;\,{x_2} =  - 5\). Do đó ta có bảng xét dấu \(f\left( x \right)\):

Cho tam thức bậc hai f (x) = -(x^2) - 4x +5. Khi đó f (x) > 0 khi (ảnh 1)

Suy ra \(f\left( x \right) > 0\) với mọi \(x \in \left( { - 5;1} \right)\) và \(f\left( x \right) < 0\) với mọi \(x \in \left( { - \infty ; - 5} \right) \cup \left( {1; + \infty } \right)\).

Vậy đáp án đúng là D.

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Điều kiện xác định của phương trình đã cho là \(2 - x \ge 0 \Leftrightarrow x \le 2\).

Bình phương hai vế của phương trình ta được

\({x^2} - 10x + m = {x^2} - 4x + 4\)

\( \Rightarrow 6x = m - 4\)

\( \Rightarrow x = \frac{{m - 4}}{6}\)

Để phương trình vô nghiệm thì \(\frac{{m - 4}}{6} > 2 \Leftrightarrow m - 4 > 12 \Leftrightarrow m > 16\).

Câu 3

A. \[10\];  
B. \[20\]; 
C. \[18\];   
D. \[22\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[\overrightarrow n  = \left( {1; - 2} \right)\]; 
B. \[\overrightarrow n  = \left( {2;1} \right)\];  
C. \[\overrightarrow n  = \left( { - 2;3} \right)\]; 
D. \[\overrightarrow n  = \left( {1;3} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP