Câu hỏi:

07/01/2026 6 Lưu

Minh cần mua một mảnh vật liệu hình đa giác \({A_1}{A_2}...{A_8}\) nội tiếp elip tâm \(O\) có độ dài trục lớn và trục nhỏ lần lượt là \(10m\)và \(8m\). Đa giác có hai trục đối xứng là các trục đối xứng của elip và góc\(\widehat {{A_1}O{A_2}} = 45^\circ \). Minh cần bao nhiêu tiền để mua biết giá của vật liệu \(100\,\,000\) đồng trên \(1\,\,{m^2}\)(làm tròn đến hàng nghìn).

Minh cần bao nhiêu tiền để mua biết giá của vật liệu 100 000 đồng trên 1 m^2 (làm tròn đến hàng nghìn). (ảnh 1)

A. \(5\,\,622\,\,000\);     
B. \(11\,\,244\,\,511\);   
C. \(1\,1\,\,245\,\,000\); 
D. \(5\,\,600\,\,000\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Minh cần bao nhiêu tiền để mua biết giá của vật liệu 100 000 đồng trên 1 m^2 (làm tròn đến hàng nghìn). (ảnh 2)

Ta có độ dài trục lớn và trục nhỏ lần lượt là \(10m\)và \(8m\) nên \(a = 5,\,b = 4\).

Suy ra phương trình của Elip \(\left( E \right):\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{16}} = 1\).

Ta có \(\widehat {{A_1}O{A_2}} = 45^\circ \) nên \({A_2}\) là giao điểm của đường thẳng \(y = x\) và Elip \(\left( E \right)\)

Suy ra \(\frac{{{x^2}}}{{25}} + \frac{{{x^2}}}{{16}} = 1 \Rightarrow 41{x^2} = 400 \Rightarrow x = \frac{{20\sqrt {41} }}{{41}}\)

Do đó \({A_2}\left( {\frac{{20\sqrt {41} }}{{41}};\,\frac{{20\sqrt {41} }}{{41}}} \right)\).

Diện tích tam giác \({A_1}O{A_2}\) là: \({S_{{A_1}O{A_2}}} = \frac{1}{2}O{A_1}.d({A_2};O{A_1}) = \frac{1}{2}.5.\frac{{20\sqrt {41} }}{{41}} = \frac{{50\sqrt {41} }}{{41}}\,\,\left( {{m^2}} \right)\).

Diện tích tam giác \({A_2}O{A_3}\) là: \({S_{{A_2}O{A_3}}} = \frac{1}{2}O{A_3}.d({A_2};O{A_3}) = \frac{1}{2}.4.\frac{{20\sqrt {41} }}{{41}} = \frac{{40\sqrt {41} }}{{41}}\,\,\left( {{m^2}} \right)\).

\( \Rightarrow {S_{{A_1}O{A_3}{A_2}}} = {S_{{A_1}O{A_2}}} + {S_{{A_2}O{A_3}}} = \frac{{50\sqrt {41} }}{{41}}\,\, + \,\,\frac{{40\sqrt {41} }}{{41}} = \,\frac{{90\sqrt {41} }}{{41}}\,\left( {{m^2}} \right)\).

Gọi \(S\) là diện tích đa giác \({A_1}{A_2}...{A_8}\) ta có

\(S = 4{S_{{A_1}O{A_3}{A_2}}} = 4\frac{{90\sqrt {41} }}{{41}} = \frac{{360\sqrt {41} }}{{41}}\,\,\left( {{m^2}} \right)\).

Vậy số tiền Minh cần là \(\frac{{360\sqrt {41} }}{{41}}.100\,000 \approx 5\,\,622\,\,000\) (đồng).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(x \in \left( { - \infty ;\, - 1} \right] \cup \left[ {5;\, + \infty } \right)\);
B. \(x \in \left[ { - 1;\,5} \right]\);  
C. \(x \in \left[ { - 5;\,1} \right]\);  
D. \(x \in \left( { - 5;\,1} \right)\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Dễ thấy \(f\left( x \right) =  - {x^2} - 4x + 5\) có \(\Delta  = 36 > 0,\,a =  - 1 < 0\)và có hai nghiệm phân biệt \({x_1} = 1;\,{x_2} =  - 5\). Do đó ta có bảng xét dấu \(f\left( x \right)\):

Cho tam thức bậc hai f (x) = -(x^2) - 4x +5. Khi đó f (x) > 0 khi (ảnh 1)

Suy ra \(f\left( x \right) > 0\) với mọi \(x \in \left( { - 5;1} \right)\) và \(f\left( x \right) < 0\) với mọi \(x \in \left( { - \infty ; - 5} \right) \cup \left( {1; + \infty } \right)\).

Vậy đáp án đúng là D.

Câu 2

A. \[10\];  
B. \[20\]; 
C. \[18\];   
D. \[22\].

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Cách tìm số giao điểm của \[5\] đường tròn phân biệt được chia làm \(2\) công đoạn:

- Công đoạn thứ 1: Chọn \(2\) đường tròn trong \[5\] đường tròn có \(C_5^2\) cách.

- Công đoạn thứ 2: Ứng với \(2\) đường tròn có tối đa \(2\) giao điểm.

Vậy số giao điểm tối đa của \[5\] đường tròn phân biệt là \[2.C_5^2 = 20\].

Câu 3

A. \[\overrightarrow n  = \left( {1; - 2} \right)\]; 
B. \[\overrightarrow n  = \left( {2;1} \right)\];  
C. \[\overrightarrow n  = \left( { - 2;3} \right)\]; 
D. \[\overrightarrow n  = \left( {1;3} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP