Cho Elip có phương trình \[\left( E \right):9{x^2} + 25{y^2} = 225\]. Hỏi diện tích hình chữ nhật cơ sở ngoại tiếp \[\left( E \right)\] (như hình vẽ) là

Cho Elip có phương trình \[\left( E \right):9{x^2} + 25{y^2} = 225\]. Hỏi diện tích hình chữ nhật cơ sở ngoại tiếp \[\left( E \right)\] (như hình vẽ) là

Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: D
Phương trình chính tắc của \[\left( E \right)\]: \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{9} = 1\).
Ta có \[\left\{ \begin{array}{l}{a^2} = 25\\{b^2} = 9\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 5\\b = 3\end{array} \right.\]
Độ dài trục lớn \(2a = 10\); độ dài trục bé \(2b = 6\)
Diện tích hình chữ nhật cơ sở ngoại tiếp \[\left( E \right)\] là \[S = 2a.2b = 10.6 = 60\] (đvdt).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Dễ thấy \(f\left( x \right) = - {x^2} - 4x + 5\) có \(\Delta = 36 > 0,\,a = - 1 < 0\)và có hai nghiệm phân biệt \({x_1} = 1;\,{x_2} = - 5\). Do đó ta có bảng xét dấu \(f\left( x \right)\):
Suy ra \(f\left( x \right) > 0\) với mọi \(x \in \left( { - 5;1} \right)\) và \(f\left( x \right) < 0\) với mọi \(x \in \left( { - \infty ; - 5} \right) \cup \left( {1; + \infty } \right)\).
Vậy đáp án đúng là D.
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Cách tìm số giao điểm của \[5\] đường tròn phân biệt được chia làm \(2\) công đoạn:
- Công đoạn thứ 1: Chọn \(2\) đường tròn trong \[5\] đường tròn có \(C_5^2\) cách.
- Công đoạn thứ 2: Ứng với \(2\) đường tròn có tối đa \(2\) giao điểm.
Vậy số giao điểm tối đa của \[5\] đường tròn phân biệt là \[2.C_5^2 = 20\].
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.