Câu hỏi:

07/01/2026 22 Lưu

Từ các chữ số \[0;\,\,1;\,\,2;\,\,3;\,\,4;\,\,5;\,\,8\] lập được bao nhiêu số có ba chữ số đôi một khác nhau, chia hết cho \[2\] và \[3\]?

A. \[35\];  
B. \[52\];  
C. \[32\]; 
D. \[48\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Số chia hết cho \[2\] và \[3\] là số chẵn và có tổng các chữ số của nó chia hết cho \[3\].

Gọi \[\overline {{a_1}{a_2}{a_3}} \]là số tự nhiên có ba chữ số đôi một khác nhau, chia hết cho \[2\] và \[3\] được lập từ các chữ số \(0;1;2;3;4;5;8\).

Trường hợp 1: \[{a_3} = 0\]

Khi đó các chữ số \[{a_1},\,{a_2}\] được lập từ các tập \[\left\{ {1;\,2} \right\}\], \[\left\{ {1;\,5} \right\}\], \[\left\{ {1;\,8} \right\}\], \[\left\{ {2;4} \right\}\], \[\left\{ {4;5} \right\}\], \[\left\{ {4;\,8} \right\}\].

Trường hợp này có \[6.2! = 12\] số.

Trường hợp 2: \[{a_3} = 2\]

Khi đó các chữ số \[{a_1},\,{a_2}\] được lập từ các tập \[\left\{ {1;\,0} \right\}\], \[\left\{ {4;\,0} \right\}\], \[\left\{ {1;\,3} \right\}\], \[\left\{ {3;4} \right\}\], \[\left\{ {5;8} \right\}\].

Trường hợp này có \[2 + 3.2! = 8\] số.

Trường hợp 3: \[{a_3} = 4\]

Khi đó các chữ số \[{a_1},\,{a_2}\] được lập từ các tập \[\left\{ {2;\,0} \right\}\], \[\left\{ {2;\,3} \right\}\], \[\left\{ {3;\,5} \right\}\], \[\left\{ {3;8} \right\}\].

Trường hợp này có \[1 + 3.2! = 7\] số.

Trường hợp 4: \[{a_3} = 8\]

Khi đó các chữ số \[{a_1},\,{a_2}\] được lập từ các tập \[\left\{ {0;\,1} \right\}\], \[\left\{ {0;\,4} \right\}\], \[\left\{ {1;\,3} \right\}\], \[\left\{ {2;5} \right\}\], \[\left\{ {3;4} \right\}\].

Trường hợp này có \[2 + 3.2! = 8\] số.

Vậy có tất cả \[12 + 8 + 7 + 8 = 35\] số cần tìm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(x \in \left( { - \infty ;\, - 1} \right] \cup \left[ {5;\, + \infty } \right)\);
B. \(x \in \left[ { - 1;\,5} \right]\);  
C. \(x \in \left[ { - 5;\,1} \right]\);  
D. \(x \in \left( { - 5;\,1} \right)\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Dễ thấy \(f\left( x \right) =  - {x^2} - 4x + 5\) có \(\Delta  = 36 > 0,\,a =  - 1 < 0\)và có hai nghiệm phân biệt \({x_1} = 1;\,{x_2} =  - 5\). Do đó ta có bảng xét dấu \(f\left( x \right)\):

Cho tam thức bậc hai f (x) = -(x^2) - 4x +5. Khi đó f (x) > 0 khi (ảnh 1)

Suy ra \(f\left( x \right) > 0\) với mọi \(x \in \left( { - 5;1} \right)\) và \(f\left( x \right) < 0\) với mọi \(x \in \left( { - \infty ; - 5} \right) \cup \left( {1; + \infty } \right)\).

Vậy đáp án đúng là D.

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Điều kiện xác định của phương trình đã cho là \(2 - x \ge 0 \Leftrightarrow x \le 2\).

Bình phương hai vế của phương trình ta được

\({x^2} - 10x + m = {x^2} - 4x + 4\)

\( \Rightarrow 6x = m - 4\)

\( \Rightarrow x = \frac{{m - 4}}{6}\)

Để phương trình vô nghiệm thì \(\frac{{m - 4}}{6} > 2 \Leftrightarrow m - 4 > 12 \Leftrightarrow m > 16\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[10\];  
B. \[20\]; 
C. \[18\];   
D. \[22\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP