Từ các chữ số \[0;\,\,1;\,\,2;\,\,3;\,\,4;\,\,5;\,\,8\] lập được bao nhiêu số có ba chữ số đôi một khác nhau, chia hết cho \[2\] và \[3\]?
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Số chia hết cho \[2\] và \[3\] là số chẵn và có tổng các chữ số của nó chia hết cho \[3\].
Gọi \[\overline {{a_1}{a_2}{a_3}} \]là số tự nhiên có ba chữ số đôi một khác nhau, chia hết cho \[2\] và \[3\] được lập từ các chữ số \(0;1;2;3;4;5;8\).
Trường hợp 1: \[{a_3} = 0\]
Khi đó các chữ số \[{a_1},\,{a_2}\] được lập từ các tập \[\left\{ {1;\,2} \right\}\], \[\left\{ {1;\,5} \right\}\], \[\left\{ {1;\,8} \right\}\], \[\left\{ {2;4} \right\}\], \[\left\{ {4;5} \right\}\], \[\left\{ {4;\,8} \right\}\].
Trường hợp này có \[6.2! = 12\] số.
Trường hợp 2: \[{a_3} = 2\]
Khi đó các chữ số \[{a_1},\,{a_2}\] được lập từ các tập \[\left\{ {1;\,0} \right\}\], \[\left\{ {4;\,0} \right\}\], \[\left\{ {1;\,3} \right\}\], \[\left\{ {3;4} \right\}\], \[\left\{ {5;8} \right\}\].
Trường hợp này có \[2 + 3.2! = 8\] số.
Trường hợp 3: \[{a_3} = 4\]
Khi đó các chữ số \[{a_1},\,{a_2}\] được lập từ các tập \[\left\{ {2;\,0} \right\}\], \[\left\{ {2;\,3} \right\}\], \[\left\{ {3;\,5} \right\}\], \[\left\{ {3;8} \right\}\].
Trường hợp này có \[1 + 3.2! = 7\] số.
Trường hợp 4: \[{a_3} = 8\]
Khi đó các chữ số \[{a_1},\,{a_2}\] được lập từ các tập \[\left\{ {0;\,1} \right\}\], \[\left\{ {0;\,4} \right\}\], \[\left\{ {1;\,3} \right\}\], \[\left\{ {2;5} \right\}\], \[\left\{ {3;4} \right\}\].
Trường hợp này có \[2 + 3.2! = 8\] số.
Vậy có tất cả \[12 + 8 + 7 + 8 = 35\] số cần tìm.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Dễ thấy \(f\left( x \right) = - {x^2} - 4x + 5\) có \(\Delta = 36 > 0,\,a = - 1 < 0\)và có hai nghiệm phân biệt \({x_1} = 1;\,{x_2} = - 5\). Do đó ta có bảng xét dấu \(f\left( x \right)\):
Suy ra \(f\left( x \right) > 0\) với mọi \(x \in \left( { - 5;1} \right)\) và \(f\left( x \right) < 0\) với mọi \(x \in \left( { - \infty ; - 5} \right) \cup \left( {1; + \infty } \right)\).
Vậy đáp án đúng là D.
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Điều kiện xác định của phương trình đã cho là \(2 - x \ge 0 \Leftrightarrow x \le 2\).
Bình phương hai vế của phương trình ta được
\({x^2} - 10x + m = {x^2} - 4x + 4\)
\( \Rightarrow 6x = m - 4\)
\( \Rightarrow x = \frac{{m - 4}}{6}\)
Để phương trình vô nghiệm thì \(\frac{{m - 4}}{6} > 2 \Leftrightarrow m - 4 > 12 \Leftrightarrow m > 16\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.