Gọi \(n\) là số nguyên dương thỏa mãn \(A_n^3 + 2A_n^2 = 48\). Hệ số của \({x^3}\) trong khai triển nhị thức Niu-tơn của \({\left( {1 - 3x} \right)^n}\) thuộc khoảng nào dưới đây?
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Điều kiện: \(n \in \mathbb{N},n \ge 3\)
\(A_n^3 + 2A_n^2 = 48 \Leftrightarrow \frac{{n!}}{{\left( {n - 3} \right)!}} + 2\frac{{n!}}{{\left( {n - 2} \right)!}} = 48\)
\( \Leftrightarrow \)\(n\left( {n - 1} \right)\left( {n - 2} \right) + 2.n\left( {n - 1} \right) = 48\)
\( \Leftrightarrow \)\({n^3} - {n^2} - 48 = 0 \Leftrightarrow n = 4\)
Ta có \({\left( {1 - 3x} \right)^4} = C_4^0{1^4}{\left( { - 3x} \right)^0} + C_4^1{1^3}{\left( { - 3x} \right)^1} + C_4^2{1^2}{\left( { - 3x} \right)^2} + C_4^3{1^1}{\left( { - 3x} \right)^3} + C_4^4{1^0}{\left( { - 3x} \right)^4}\)
\( = 1 - 12x + 54{x^2} - 108{x^3} + 81{x^4}\)
Vậy hệ số của \({x^3}\) trong khai triển \({\left( {1 - 3x} \right)^4}\) là \[ - 108\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Dễ thấy \(f\left( x \right) = - {x^2} - 4x + 5\) có \(\Delta = 36 > 0,\,a = - 1 < 0\)và có hai nghiệm phân biệt \({x_1} = 1;\,{x_2} = - 5\). Do đó ta có bảng xét dấu \(f\left( x \right)\):
Suy ra \(f\left( x \right) > 0\) với mọi \(x \in \left( { - 5;1} \right)\) và \(f\left( x \right) < 0\) với mọi \(x \in \left( { - \infty ; - 5} \right) \cup \left( {1; + \infty } \right)\).
Vậy đáp án đúng là D.
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Cách tìm số giao điểm của \[5\] đường tròn phân biệt được chia làm \(2\) công đoạn:
- Công đoạn thứ 1: Chọn \(2\) đường tròn trong \[5\] đường tròn có \(C_5^2\) cách.
- Công đoạn thứ 2: Ứng với \(2\) đường tròn có tối đa \(2\) giao điểm.
Vậy số giao điểm tối đa của \[5\] đường tròn phân biệt là \[2.C_5^2 = 20\].
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.