Câu hỏi:

08/01/2026 209 Lưu

(1, 5 điểm).

Bảng sau thống kê tiền lương \[50\] công nhân của một công ty trong tháng \[5\] năm \[2025\]:

Tiền lương (triệu đồng)

\[\left[ {7\,;\,8} \right)\]

\[\left[ {8\,;\,9} \right)\]

\[\left[ {9\,;10} \right)\]

\[\left[ {10\,;11} \right)\]

\[\left[ {11\,;12} \right)\]

\[\left[ {12\,;13} \right)\]

Tần số

\[10\]

\[7\]

\[10\]

\[8\]

\[9\]

\[6\]

 

Hỏi nhóm nào có tần số nhỏ nhất? Tính tần số tương đối của nhóm đó.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Nhóm nào có tần số nhỏ nhất là \[\left[ {12\,;13} \right)\].

Tần số tương đối của nhóm đó là: \(\frac{6}{{50}}\,\, \cdot \,\,100\%  = 12\% \)

Câu hỏi cùng đoạn

Câu 2:

Một tổ học sinh có \[3\] bạn nữ là Hoa, Hồng, Hà và \[4\] bạn nam là An, Bình, Dũng, Cường. Xét phép thử: "Chọn ngẫu nhiên một bạn từ tổ học sinh đã cho ". Tính xác suất của biến cố \[A\]: "Bạn học sinh được chọn là nam ".

Xem lời giải

verified Giải bởi Vietjack

Không gian mẫu của phép thử "Chọn ngẫu nhiên một bạn từ tổ học sinh đã chọn" là: \[\Omega  = \{ \]Hoa, Hồng, Hà, An, Bình, Dũng, Cường\(\left. {} \right\}\)

Số phần từ của không gian mẫu là: \[7\].

Số kết quả thuận lợi cho biến cố \[A\]: "Bạn học sinh được chọn là nam" là \[4\], đó là: An, Bình, Dūng, Cường.

Xác suất của biến cố \[A\]: "Bạn học sinh được chọn là nam" là \[\frac{4}{7}\].

Vậy xác suất của biến cố \[A\]: "Bạn học sinh được chọn là nam" là \[\frac{4}{7}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

a) Ta có \(\Delta ADH\) vuông tại \(D\) nên \(\Delta ADH\) nội tiếp đường tròn đường kính \(AH\).

Ta có \(\Delta AEH\) vuông tại \(E\) nên \(\Delta AEH\) nội tiếp đường tròn đường kính \(AH\).

Bốn điểm \(A\,,\,\,D\,,\,\,H,\,\,E\) cùng thuộc đường tròn đường kính \(AH\). Hay tứ giác \(ADHE\) nội tiếp đường tròn đường kính \(AH\).

b) Vì \(GF \bot BF\) tại \(F\) nên ba điểm \(G,\,\,B,\,\,F\) thuộc đường tròn đường kính \(GB\).

\(\Delta GHB\) vuông tại \(G\) nên \(\Delta GHB\) nội tiếp đường tròn đường kính \(GB\)

Tứ giác \(GHBF\) nội tiếp đường tròn đường kính \(GB\).

Suy ra \(\widehat {GFI} = \widehat {GBH}\) (cùng chắn cung \(GH\,)\)\(\,\left( 1 \right)\)

Lại có \(GI{\rm{//}}AB\); \(AB \bot HF\) nên \(\widehat {GIF} = \widehat {CHB} = 90^\circ \,\)\(\,\left( 2 \right)\)

Từ \(\,\left( 1 \right)\) và \(\,\left( 2 \right)\) suy ra: (g.g)

Hay \(\frac{{FI}}{{HB}} = \frac{{GI}}{{GH}}\)\(\left( 3 \right)\)

Vì \(\widehat {BAH} = \widehat {BHD}\) (cùng phụ với \(\widehat {AHD}\)); \(\widehat {HDB} = \widehat {HDA} = 90^\circ \)

Do đó  (g.g)

Suy ra \(\frac{{HD}}{{AD}} = \frac{{HB}}{{AH}}\) hay \(\frac{{HD}}{{HB}} = \frac{{AD}}{{AH}}\)

Mặt khác \(AD\,{\rm{//}}\,GI\) nên \(\frac{{AD}}{{GI}} = \frac{{AH}}{{HG}}\) hay \(\frac{{AD}}{{AH}} = \frac{{GI}}{{HG}}\)\(\left( 4 \right)\)

Từ \(\left( 3 \right)\) và \(\left( 4 \right)\) ta có \(\frac{{FI}}{{HB}} = \frac{{HD}}{{HB}}\) hay \(FI = HD\).

c) Gọi \(L\) là giao điểm của \(EQ\) và \(PN\). Gọi \(J\) là giao điểm của \(CM\) và \(EP\).

Media VietJack

Tứ giác \(EMKN\) là hình chữ nhật ( vì \(\widehat {MEN} = \widehat {ENK} = \widehat {EMK} = 90^\circ \)).

Lại có \(EK\) là phân giác góc \(HEC\) nên \(EMKN\) là hình vuông.

Vì \(KN{\rm{//}}EH\) nên \(\frac{{CN}}{{CE}} = \frac{{NQ}}{{EM}} = \frac{{KN}}{{HE}}\) nhưng \(ME = NE\) suy ra

\(\frac{{NQ}}{{EM}} = \frac{{NQ}}{{NE}}\)\( = \frac{{KN}}{{HE}} = \frac{{EN}}{{HE}}\) hay \(\frac{{NQ}}{{NE}} = \frac{{EN}}{{HE}}\)

Lại có \(\widehat {ENQ} = \widehat {NEH} = 90^\circ \) nên  (c.g.c)

Suy ra \(\widehat {NEQ} = \widehat {EHN}\) (hai góc tương ứng).

Hay \(\widehat {NEQ} + \widehat {EHN}\)\( = \widehat {EHN} + \widehat {EHN} = 90^\circ \).

Xét \(\Delta ELN\)vuông tại \(L\) suy ra \(EQ \bot HN\) tại \(L\)

Tương tự ta có \(EP \bot CM\) tại \(J\).

Xét \(\Delta EPQ\) có \(QJ\) và \(PL\) là hai đường cao cắt nhau tại \(T\) nên \(T\) là trực tâm suy ra \(ET \bot PQ\).

Lời giải

Đật \(AM = x\,\,\)\(({\rm{cm}},x > 0)\)

Khi đó chiều cao viên kẹo là \[h = OA\]\[ = x + 1\].

Áp dụng định lý Thalès, ta có: \(\frac{{AM}}{{OA}} = \frac{{EM}}{{OB}}\) hay \(\frac{x}{{x + 1}} = \frac{1}{R}\) suy ra \(R = \frac{{x + 1}}{x}\)

Thể tích viên kẹo là: \(\)

\(V = \frac{1}{3}\pi {R^2}h\)\( = \frac{1}{3}\pi {\left( {\frac{{x + 1}}{x}} \right)^2} \cdot \,\,(x + 1)\)

\( = \frac{1}{3}\pi  \cdot \frac{{{x^3} + 3{x^2} + 3x + 1}}{{{x^2}}}\)\( = \pi \left( {\frac{x}{3} + 1 + \frac{1}{x} + \frac{1}{{3{x^2}}}} \right)\)

\( = \pi \left( {\frac{x}{4} + \frac{1}{x} + \frac{x}{{24}} + \frac{x}{{24}} + \frac{1}{{3{x^2}}} + 1} \right)\)

Áp dụng bất đẳng thức Cauchy, ta có:

\(\frac{x}{4} + \frac{1}{x} \ge 2\sqrt {\frac{x}{4} \cdot \frac{1}{x}} \)\( = 2 \cdot \frac{1}{2} = 1\)

\(\frac{x}{{24}} + \frac{x}{{24}} + \frac{1}{{3{x^2}}} \ge 3\sqrt[3]{{\frac{x}{{24}} \cdot \frac{x}{{24}} \cdot \frac{1}{{3{x^2}}}}}\)\( = 3 \cdot \frac{1}{{12}} = \frac{1}{4}\)

Suy ra \(V \ge \pi \left( {1 + \frac{1}{4} + 1} \right)\)\( = \frac{{9\pi }}{4}\)

Dấu  xảy ra khi và chi khi \(\left\{ {\begin{array}{*{20}{l}}{\frac{x}{4} = \frac{1}{x}}\\{\frac{x}{{24}} = \frac{1}{{3{x^2}}}}\end{array}} \right.\) suy ra \(x = 2\) (TM)

Vậy chiều cao của viên kẹo là \(h = 3\,\,{\rm{cm}}\,.\)