(1, 0 điểm).
Một bác nông dân có một bình đựng nước chè xanh, phần chứa nước là dạng hình trụ có bán kính đáy bằng \(4\,\,{\rm{cm}}\), mực nước trong bình có chiều cao bằng \[10{\rm{ cm}}\]. Bác muốn đổ hết nước từ bình sang một cái bát uống nước, phần chứa nước là dạng nửa hình cầu có bán kính bằng \[{\rm{6 cm}}\](hình vẽ bên). Hỏi nếu đổ như vậy thì nước có bị tràn ra ngoài hay không? Vì sao?

Một bác nông dân có một bình đựng nước chè xanh, phần chứa nước là dạng hình trụ có bán kính đáy bằng \(4\,\,{\rm{cm}}\), mực nước trong bình có chiều cao bằng \[10{\rm{ cm}}\]. Bác muốn đổ hết nước từ bình sang một cái bát uống nước, phần chứa nước là dạng nửa hình cầu có bán kính bằng \[{\rm{6 cm}}\](hình vẽ bên). Hỏi nếu đổ như vậy thì nước có bị tràn ra ngoài hay không? Vì sao?

Quảng cáo
Trả lời:
Thể tích nước trong bình là: \(V = \pi {R^2}h = \pi \cdot {4^2} \cdot 10\)\( = 160\pi \left( {\;{\rm{c}}{{\rm{m}}^3}} \right)\)
Thể tích cái bát là: \({V^\prime } = \frac{1}{2}\,\, \cdot \,\,\frac{4}{3}\pi {r^3}\)\( = \frac{1}{2}\,\, \cdot \,\,\frac{4}{3}\pi \cdot {6^3}\)\( = 144\pi \left( {\;{\rm{c}}{{\rm{m}}^3}} \right)\)
Vì \(V > V'\) nên nếu đổ như vậy thì nước có bị tràn ra ngoài.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \[x,\,y\] (nghìn đồng) lần lượt là giá \[1\] cái bút và \[1\] quyển vở \[\left( {x,\,y > 0} \right)\].
Nam mua \[10\] cái bút và \[15\] quyển vở hết \[200\] nghìn đồngnên ta có: \[10x + 15y = 200\] (1)
Hùng mua \[7\] cái bút và \[14\] quyển vở hết \[175\] nghìn đồng nên ta có: \[7x + 14y = 175\] (2)
Từ (1) và (2) ta có hệ phương trình:
\[\left\{ \begin{array}{l}10x + 15y = 200\\7x + 14y = 175\end{array} \right.\] \[\left\{ \begin{array}{l}2x + 3y = 40\\x + 2y = 25\end{array} \right.\] \[\left\{ \begin{array}{l}2x + 3y = 40\\2x + 4y = 50\end{array} \right.\] \[\left\{ \begin{array}{l}x = 5\\y = 10\end{array} \right.\] (thỏa mãn)
Vậy giá một chiếc bút là \[5\] nghìn đồng, một quyển vở là \[10\] nghìn đồng.
Lời giải
Đật \(AM = x\,\,\)\(({\rm{cm}},x > 0)\)
Khi đó chiều cao viên kẹo là \[h = OA\]\[ = x + 1\].
Áp dụng định lý Thalès, ta có: \(\frac{{AM}}{{OA}} = \frac{{EM}}{{OB}}\) hay \(\frac{x}{{x + 1}} = \frac{1}{R}\) suy ra \(R = \frac{{x + 1}}{x}\)
Thể tích viên kẹo là: \(\)
\(V = \frac{1}{3}\pi {R^2}h\)\( = \frac{1}{3}\pi {\left( {\frac{{x + 1}}{x}} \right)^2} \cdot \,\,(x + 1)\)
\( = \frac{1}{3}\pi \cdot \frac{{{x^3} + 3{x^2} + 3x + 1}}{{{x^2}}}\)\( = \pi \left( {\frac{x}{3} + 1 + \frac{1}{x} + \frac{1}{{3{x^2}}}} \right)\)
\( = \pi \left( {\frac{x}{4} + \frac{1}{x} + \frac{x}{{24}} + \frac{x}{{24}} + \frac{1}{{3{x^2}}} + 1} \right)\)
Áp dụng bất đẳng thức Cauchy, ta có:
\(\frac{x}{4} + \frac{1}{x} \ge 2\sqrt {\frac{x}{4} \cdot \frac{1}{x}} \)\( = 2 \cdot \frac{1}{2} = 1\)
\(\frac{x}{{24}} + \frac{x}{{24}} + \frac{1}{{3{x^2}}} \ge 3\sqrt[3]{{\frac{x}{{24}} \cdot \frac{x}{{24}} \cdot \frac{1}{{3{x^2}}}}}\)\( = 3 \cdot \frac{1}{{12}} = \frac{1}{4}\)
Suy ra \(V \ge \pi \left( {1 + \frac{1}{4} + 1} \right)\)\( = \frac{{9\pi }}{4}\)
Dấu xảy ra khi và chi khi \(\left\{ {\begin{array}{*{20}{l}}{\frac{x}{4} = \frac{1}{x}}\\{\frac{x}{{24}} = \frac{1}{{3{x^2}}}}\end{array}} \right.\) suy ra \(x = 2\) (TM)
Vậy chiều cao của viên kẹo là \(h = 3\,\,{\rm{cm}}\,.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
