Cho Hypebol \(\left( H \right):\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1\) và đường thẳng \(\Delta :x + y = 3\). Tích các khoảng cách từ hai tiêu điểm của \(\left( H \right)\) đến \(\Delta \) bằng giá trị nào sau đây?
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Phương trình chính tắc của (H) có dạng \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\), với \(\left\{ \begin{array}{l}{a^2} = 16\\{b^2} = 9\end{array} \right.\)
Ta có \({c^2} = {a^2} + {b^2} = 16 + 9 = 25\).
Suy ra \(c = 5\).
Khi đó hai tiêu điểm của \(\left( H \right)\) là \(\overrightarrow {{F_1}} \left( { - 5;0} \right),\overrightarrow {{F_2}} \left( {5;0} \right)\).
Ta có \(\Delta :x + y = 3 \Leftrightarrow x + y - 3 = 0\).
Ta có \(d\left( {{F_1},\Delta } \right) = \frac{{\left| { - 5 + 0 - 3} \right|}}{{\sqrt {{1^2} + {1^2}} }} = 4\sqrt 2 \) và \[d\left( {{F_2},\Delta } \right) = \frac{{\left| {5 + 0 - 3} \right|}}{{\sqrt {{1^2} + {1^2}} }} = \sqrt 2 \].
Khi đó tích các khoảng cách từ hai tiêu điểm của \(\left( H \right)\) đến \(\Delta \) là: \(4\sqrt 2 .\sqrt 2 = 8\).
Vậy ta chọn phương án B.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Ta có sơ đồ sau:
|
Dãy ghế thứ nhất |
1 |
2 |
3 |
4 |
|
Dãy ghế thứ hai |
5 |
6 |
7 |
8 |
Ở ghế 1: có \(8\) cách chọn học sinh ngồi vào ghế
Ở ghế 5: có \(4\) cách chọn học sinh ngồi vào ghế (khác trường với học sinh ghế 1).
Ở ghế 2: có \(6\) cách chọn học sinh ngồi vào ghế
Ở ghế 6: có \(3\) cách chọn học sinh ngồi vào ghế (khác trường với học sinh ghế 1).
Ở ghế 3: có \(4\) cách chọn học sinh ngồi vào ghế
Ở ghế 7: có \(2\) cách chọn học sinh ngồi vào ghế (khác trường với học sinh ghế 1).
Ở ghế 4: có \(2\) cách chọn học sinh ngồi vào ghế
Ở ghế 8: có \(1\) cách chọn học sinh ngồi vào ghế (khác trường với học sinh ghế 1).
Vậy có: \(8.4.6.3.4.2.2.1 = 9\,\,216\) cách xếp sao cho bất cứ hai học sinh nào ngồi cạnh nhau hoặc đối diện nhau khác trường với nhau.
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Gọi số cần tìm có dạng \[\overline {ab} \]
Vì đều là số chẵn nên
\[a\] có \(4\) cách chọn (vì \(a\) được chọn từ một trong bốn số \(2;4;6;8\))
\[b\] có \(5\) cách chọn (vì \(b\) được chọn từ một trong năm số \(0;2;4;6;8\))
Như vậy, ta có \[4.5 = 20\] số cần tìm.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
