Có 4 hành khách bước lên một đoàn tàu gồm 4 toa. Mỗi hành khách độc lập với nhau và chọn ngẫu nhiên một toa. Xác suất để 1 toa có 3 người, 1 toa có 1 người và 2 toa còn lại không có ai là:
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Không gian mẫu của phép thử trên là số cách xếp \(4\) hành khách lên \(4\) toa tàu.
Vì chọn mỗi hành khách có \(4\) cách chọn toa nên ta có \({4^4}\) cách xếp.
Suy ra số phần tử của không gian mẫu là \(n\left( \Omega \right) = {4^4}\).
Gọi biến cố A: “\(1\) toa có \(3\) người, \(1\) toa có \(1\) người và \(2\) toa còn lại không có ai”.
Để tìm số phần tử của biến cố A, ta chia thành hai giai đoạn như sau:
Giai đoạn 1: Chọn \(3\) hành khách trong số \(4\) hành khách và chọn \(1\) toa trong số \(4\) toa.
Sau đó xếp lên toa đó \(3\) hành khách vừa chọn.
Khi đó ta có \(C_4^3.C_4^1\) cách.
Giai đoạn 2: Chọn \(1\) toa trong số \(3\) toa còn lại và xếp \(1\) hành khách còn lại lên toa đó.
Suy ra có \(C_3^1\) cách. Hiển nhiên khi đó \(2\) toa còn lại sẽ không có hành khách nào.
Theo quy tắc nhân, ta có \(n\left( A \right) = C_4^3.C_4^1.C_3^1\).
Vậy xác suất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{C_4^3.C_4^1.C_3^1}}{{{4^4}}} = \frac{3}{{16}}\).
Ta chọn phương án B.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Ta có sơ đồ sau:
|
Dãy ghế thứ nhất |
1 |
2 |
3 |
4 |
|
Dãy ghế thứ hai |
5 |
6 |
7 |
8 |
Ở ghế 1: có \(8\) cách chọn học sinh ngồi vào ghế
Ở ghế 5: có \(4\) cách chọn học sinh ngồi vào ghế (khác trường với học sinh ghế 1).
Ở ghế 2: có \(6\) cách chọn học sinh ngồi vào ghế
Ở ghế 6: có \(3\) cách chọn học sinh ngồi vào ghế (khác trường với học sinh ghế 1).
Ở ghế 3: có \(4\) cách chọn học sinh ngồi vào ghế
Ở ghế 7: có \(2\) cách chọn học sinh ngồi vào ghế (khác trường với học sinh ghế 1).
Ở ghế 4: có \(2\) cách chọn học sinh ngồi vào ghế
Ở ghế 8: có \(1\) cách chọn học sinh ngồi vào ghế (khác trường với học sinh ghế 1).
Vậy có: \(8.4.6.3.4.2.2.1 = 9\,\,216\) cách xếp sao cho bất cứ hai học sinh nào ngồi cạnh nhau hoặc đối diện nhau khác trường với nhau.
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Gọi số cần tìm có dạng \[\overline {ab} \]
Vì đều là số chẵn nên
\[a\] có \(4\) cách chọn (vì \(a\) được chọn từ một trong bốn số \(2;4;6;8\))
\[b\] có \(5\) cách chọn (vì \(b\) được chọn từ một trong năm số \(0;2;4;6;8\))
Như vậy, ta có \[4.5 = 20\] số cần tìm.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
