Người ta làm mô hình một chiếc kem gồm hai phần: phần trên có dạng một nửa hình cầu, đường kính \(AB = 50\,cm;\) phần dưới có dạng hình nón với chiều cao \(h = 120\,cm\) và đường kính đáy bằng đường kính nửa hình cầu phần trên (như hình bên). Tính thể tích của mô hình chiếc kem đó.

Quảng cáo
Trả lời:
|
Bán kính đường tròn đáy hình nón là \(R = \frac{{AB}}{2} = 25\left( {cm} \right)\) Thể tích khối nón là \({V_n} = \frac{1}{3}\pi {R^2}h = \frac{1}{3}\pi {.25^2}.120 = 25000\pi \left( {c{m^3}} \right)\) |
|
Vì \(R = 25\,cm\) cũng là bán kính của nửa mặt cầu. nên thể tích của nửa khối cầu phần trên là \({V_{nc}} = \frac{1}{2}.\frac{4}{3}.\pi {R^3} = \frac{2}{3}{.25^3}\pi = \frac{{31250\pi }}{3}\left( {c{m^3}} \right)\) |
|
Vậy thể tích của mô hình chiếc kem là \(V = {V_n} + {V_{nc}} = 25000\pi + \frac{{31250\pi }}{3} = \frac{{106250}}{3}\pi \left( {c{m^3}} \right)\) |
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là C
Lời giải
|
\(C = \frac{x}{{\left( {\sqrt x - 4} \right)\left( {\sqrt x + 4} \right)}} + \frac{{2\left( {\sqrt x - 4} \right)}}{{\left( {\sqrt x + 4} \right)\left( {\sqrt x - 4} \right)}} + \frac{{2\left( {\sqrt x + 4} \right)}}{{\left( {\sqrt x - 4} \right)\left( {\sqrt x + 4} \right)}}\) |
|
\(C = \frac{{x + 2\sqrt x - 8 + 2\sqrt x + 8}}{{\left( {\sqrt x - 4} \right)\left( {\sqrt x + 4} \right)}} = \frac{{x + 4\sqrt x }}{{\left( {\sqrt x - 4} \right)\left( {\sqrt x + 4} \right)}}\) |
|
\(C = \frac{{\sqrt x \left( {\sqrt x + 4} \right)}}{{\left( {\sqrt x - 4} \right)\left( {\sqrt x + 4} \right)}} = \frac{{\sqrt x }}{{\sqrt x - 4}}\) |
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
