Câu hỏi:

11/01/2026 47 Lưu

Một cây kem ốc quế có chiều cao 18 cm, phần thân là lớp vỏ bằng bánh quế có dạng là một hình nón, phần đỉnh có dạng là 1 nửa hình cầu có bán kính bằng 3 cm bằng với bán kính của đáy hình nón (minh họa bằng hình vẽ). Tính thể tích của cả cây kem.
Media VietJack

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Phần thân của kem ốc quế cao: \(18 - 3 = 15{\rm{\;cm}}\).

Thể tích của phần thân kem là: \({V_1} = \frac{1}{3}\pi \cdot {r^2}h = \frac{1}{3}\pi \cdot 15 \cdot {3^2} = 45\pi \left( {{\rm{\;c}}{{\rm{m}}^3}} \right)\)

Thể tích phần đỉnh kem là: \({V_2} = \frac{1}{2} \cdot \frac{4}{3} \cdot \pi \cdot {3^3} = 18\pi \left( {{\rm{\;c}}{{\rm{m}}^3}} \right)\)

Thể tích cả cây kem là: \(V = 45\pi + 18\pi = 63\pi \left( {{\rm{\;c}}{{\rm{m}}^3}} \right)\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Chứng minh tứ giác \(DIHK\) nội tiếp đường tròn.

Ta có có \(\widehat {DIE} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn)

\(\Delta \,DKH\) vuông tại\[K\] nên \(D,K,H\) cùng thuộc đường tròn đường kính \[DH\]

\(\Delta \,DIH\) vuông tại \[I\]nên \(D,I,H\) cùng thuộc đường tròn đường kính \[DH\]

Vậy \(D,I,H,K\) cùng thuộc đường tròn đường kính \[DH\]hay tứ giác \[DIHK\]nội tiếp đường tròn.

 

b) Chứng minh \(CI.CD = CH.CK\) và \(HA.IB = HB.IA\).

Xét  và

có \(\widehat {DCK}\) chung và \(\widehat {CIH} = \widehat {CKD} = 90^\circ \). Suy ra  ( g.g)

nên \(\frac{{CI}}{{CK}} = \frac{{CH}}{{CD}}\) hay \[CI.CD = CH.CK\]

Xét \(\Delta OAB\) cân tại \[O\]có đường cao \[OK\]nên \[OK\] đồng thời là phân giác

Khi đó \(\widehat {AOK} = \widehat {KOB}\) suy ra cung .  Suy ra .

Vậy \[IE\]là phân giác của \[\widehat {AIB}\]nên \(\frac{{HA}}{{HB}} = \frac{{IA}}{{IB}}\) (tính chất đường phân giác) hay \(HA.HB = IA.HB\)

c) Vẽ \(DT\) vuông góc với đường thẳng \(AI\) tại \(T\), đường tròn đường kính \(CK\) cắt đoạn thẳng \(CD\) tại \(G(G \ne D)\). Chứng minh \(K,G,T\) thẳng hàng.

Do  vuông tại \[T\]và  vuông tại \[K\]nên \({\rm{D}},{\rm{T}},{\rm{A}},{\rm{K}}\) cùng thuộc đường tròn \[DA\]. Khi đó \(\widehat {TKD} = \widehat {TAD}\) (cùng chắn cung TD ) mà \(\widehat {TAD} = \widehat {IAD} = \widehat {IED}\) (cùng chắn cung ID ) nên \(\widehat {TKD} = \widehat {IED}\). Suy ra \[TK\,//\,IE\].

Do G thuộc đường tròn đường kinh CK nên \(\widehat {CGK} = {90^ \circ }\) nên \(KG \bot CD\)

Mà \(EI \bot CD\) (do I thuộc đường tròn đường kính DE ) nên \(KG//EI\) (2)

Từ (1) và (2) suy ra \(T,G,K\) thẳng hàng.

Lời giải

Vì đồ thị hàm số đi qua \(A\left( { - 2; - 2} \right)\) nên thay \(x = - 2;y = - 2\) vào hàm số ta được:

\(\left( {m - 2} \right) \cdot {( - 2)^2} = - 2 \Rightarrow \)\(4\left( {m - 2} \right) = - 2 \Rightarrow \)\(m - 2 = - \frac{1}{2} \Rightarrow \)\(m = \frac{3}{2}\).

\(P = 4 \cdot {\left( {\frac{3}{2}} \right)^2} - 2 \cdot \frac{3}{2} + 5 = 11\).

Câu 5

A. \(40^\circ \).         
B. \(50^\circ \).           
C. \(45^\circ \).   
D. \(100^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP