Cho hai biểu thức: \(A = \frac{{2 + \sqrt x }}{{\sqrt x }}\) và \(B = \frac{{\sqrt x - 1}}{{\sqrt x }} + \frac{{2\sqrt x + 1}}{{x + \sqrt x }}\) (với \(x > 0)\).
1. Tính giá trị của \(A\) khi \(x = 64.\)
2. Rút gọn biểu thức \(B.\)
3. Tìm x để \(\frac{A}{B} > \frac{3}{2}.\)
Cho hai biểu thức: \(A = \frac{{2 + \sqrt x }}{{\sqrt x }}\) và \(B = \frac{{\sqrt x - 1}}{{\sqrt x }} + \frac{{2\sqrt x + 1}}{{x + \sqrt x }}\) (với \(x > 0)\).
1. Tính giá trị của \(A\) khi \(x = 64.\)
2. Rút gọn biểu thức \(B.\)
3. Tìm x để \(\frac{A}{B} > \frac{3}{2}.\)
Quảng cáo
Trả lời:
\(1.\,A = \frac{{2 + \sqrt x }}{{\sqrt x }} = \frac{{2 + \sqrt {64} }}{{\sqrt {64} }} = \frac{5}{4}\)
\(2.\,B = \frac{{\sqrt x - 1}}{{\sqrt x }} + \frac{{2\sqrt x + 1}}{{x + \sqrt x }} = \frac{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}{{\sqrt x \left( {\sqrt x + 1} \right)}} + \frac{{2\sqrt x + 1}}{{\sqrt x \left( {\sqrt x + 1} \right)}}\)
\( = \frac{{\sqrt x + 2}}{{\sqrt x + 1}}\)
\(3.\,\,\frac{{\sqrt x + 2}}{{\sqrt x }}:\frac{{\sqrt x + 2}}{{\sqrt x + 1}} > \frac{3}{2} \Leftrightarrow \frac{{\sqrt x + 1}}{{\sqrt x }} > \frac{3}{2}\)
\( \Leftrightarrow 0 < x < 4\)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi số học sinh dự thi của hai trường A, B lần lượt là \(x,\,y\) (học sinh) \(\left( {x,y \in {\mathbb{N}^*}} \right)\)
Số học sinh trúng tuyển chiếm 40% nên ta có
\(\left( {x + y} \right)40\% = 22 \Leftrightarrow x + y = 55\)
Trường A có số học sinh trúng tuyển là \(50\% x = \frac{1}{2}x\)
Trường B có số học sinh trúng tuyển là \(28\% y = \frac{7}{{25}}y\)
Cả hai trường có 22 học sinh trúng tuyển
\(\frac{1}{2}x + \frac{7}{{25}}y = 22 \Leftrightarrow 25x + 14y = 1100\)
Hệ phương trình \(\left\{ \begin{array}{l}x + y = 55\\25x + 14y = 1100\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 30\\y = 25\end{array} \right.\)
Lời giải
\[\begin{array}{l}2P = 2{x^2} + 4{y^2} + 4xy - 4x + 4042\\ = {\left( {x + 2y} \right)^2} + {\left( {x - 2} \right)^2} + 4038 \ge 4038\\P \ge 2019\end{array}\]
Dấu “=” xảy ra khi\[\left\{ \begin{array}{l}x + 2y = 0\\x - 2 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = - 1\\x = 2\end{array} \right.\]Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.