Cho hai biểu thức: \(A = \frac{{\sqrt x }}{{\sqrt x - 2}}\) và \(B = \frac{{x - 4}}{{x\sqrt x - 8}} + \frac{{x + \sqrt x + 2}}{{{{\left( {\sqrt x + 1} \right)}^2} + 3}}\)
(với \(x \ge 0,x \ne 4\)).
1. Tính giá trị của A khi \(x = 9\).
2. Rút gọn \(B\).
3. Tìm điều kiện của \(x\) để \(A \le B.\)
Cho hai biểu thức: \(A = \frac{{\sqrt x }}{{\sqrt x - 2}}\) và \(B = \frac{{x - 4}}{{x\sqrt x - 8}} + \frac{{x + \sqrt x + 2}}{{{{\left( {\sqrt x + 1} \right)}^2} + 3}}\)
(với \(x \ge 0,x \ne 4\)).
1. Tính giá trị của A khi \(x = 9\).
2. Rút gọn \(B\).
3. Tìm điều kiện của \(x\) để \(A \le B.\)
Quảng cáo
Trả lời:
\(1.\,A = \frac{{\sqrt x }}{{\sqrt x - 2}} = \frac{{\sqrt 9 }}{{\sqrt 9 - 2}} = 3\)
\(2.\,\,B = \frac{{x - 4}}{{x\sqrt x - 8}} + \frac{{x + \sqrt x + 2}}{{{{\left( {\sqrt x + 1} \right)}^2} + 3}}\)
\( = \frac{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}{{\left( {\sqrt x - 2} \right)\left( {x + 2\sqrt x + 4} \right)}} + \frac{{x + \sqrt x + 2}}{{x + 2\sqrt x + 1 + 3}}\) \( = \frac{{\sqrt x + 2}}{{x + 2\sqrt x + 4}} + \frac{{x + \sqrt x + 2}}{{x + 2\sqrt x + 4}}\)
\( = \frac{{x + 2\sqrt x + 4}}{{x + 2\sqrt x + 4}} = 1\)
\(3.\,\,A \le B\) \( \Leftrightarrow \frac{{\sqrt x }}{{\sqrt x - 2}} \le 1\)
\( \Leftrightarrow \frac{{\sqrt x }}{{\sqrt x - 2}} - 1 \le 0\)
\( \Leftrightarrow \frac{2}{{\sqrt x - 2}} \le 0\)
\( \Leftrightarrow \sqrt x - 2 < 0\) \( \Leftrightarrow x < 4\)
\(0 \le x < 4\)Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi số học sinh dự thi của hai trường A, B lần lượt là \(x,\,y\) (học sinh) \(\left( {x,y \in {\mathbb{N}^*}} \right)\)
Số học sinh trúng tuyển chiếm 40% nên ta có
\(\left( {x + y} \right)40\% = 22 \Leftrightarrow x + y = 55\)
Trường A có số học sinh trúng tuyển là \(50\% x = \frac{1}{2}x\)
Trường B có số học sinh trúng tuyển là \(28\% y = \frac{7}{{25}}y\)
Cả hai trường có 22 học sinh trúng tuyển
\(\frac{1}{2}x + \frac{7}{{25}}y = 22 \Leftrightarrow 25x + 14y = 1100\)
Hệ phương trình \(\left\{ \begin{array}{l}x + y = 55\\25x + 14y = 1100\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 30\\y = 25\end{array} \right.\)
Lời giải
\[\begin{array}{l}2P = 2{x^2} + 4{y^2} + 4xy - 4x + 4042\\ = {\left( {x + 2y} \right)^2} + {\left( {x - 2} \right)^2} + 4038 \ge 4038\\P \ge 2019\end{array}\]
Dấu “=” xảy ra khi\[\left\{ \begin{array}{l}x + 2y = 0\\x - 2 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = - 1\\x = 2\end{array} \right.\]Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.