Đề thi tuyển sinh vào lớp 10 môn Toán chuyên năm 2021-2022 sở GD&ĐT Trà vinh có đáp án
7 người thi tuần này 4.6 7 lượt thi 9 câu hỏi 45 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
Đề thi tuyển sinh vào lớp 10 môn Toán Sở GD&ĐT Bến Tre năm học 2025-2026 có đáp án
Đề thi tuyển sinh vào lớp 10 môn Toán Sở GD&ĐT Lạng Sơn năm học 2025-2026 có đáp án
Đề thi tuyển sinh vào lớp 10 môn Toán Sở GD&ĐT Quảng Nam năm học 2025-2026 có đáp án
Đề thi tuyển sinh vào lớp 10 môn Toán Sở GD&ĐT Sơn La năm học 2025-2026 có đáp án
Đề thi tuyển sinh vào lớp 10 môn Toán Sở GD&ĐT Kiên Giang năm học 2025-2026 có đáp án
Đề thi tuyển sinh vào lớp 10 môn Toán Sở GD&ĐT Gia Lai năm học 2025-2026 có đáp án
Đề thi tuyển sinh vào lớp 10 môn Toán chuyên năm 2021-2022 sở GD&ĐT Hà Nam có đáp án
Danh sách câu hỏi:
Lời giải
\(1.\,A = \frac{{2 + \sqrt x }}{{\sqrt x }} = \frac{{2 + \sqrt {64} }}{{\sqrt {64} }} = \frac{5}{4}\)
\(2.\,B = \frac{{\sqrt x - 1}}{{\sqrt x }} + \frac{{2\sqrt x + 1}}{{x + \sqrt x }} = \frac{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}{{\sqrt x \left( {\sqrt x + 1} \right)}} + \frac{{2\sqrt x + 1}}{{\sqrt x \left( {\sqrt x + 1} \right)}}\)
\( = \frac{{\sqrt x + 2}}{{\sqrt x + 1}}\)
\(3.\,\,\frac{{\sqrt x + 2}}{{\sqrt x }}:\frac{{\sqrt x + 2}}{{\sqrt x + 1}} > \frac{3}{2} \Leftrightarrow \frac{{\sqrt x + 1}}{{\sqrt x }} > \frac{3}{2}\)
\( \Leftrightarrow 0 < x < 4\)
Lời giải
Gọi số học sinh dự thi của hai trường A, B lần lượt là \(x,\,y\) (học sinh) \(\left( {x,y \in {\mathbb{N}^*}} \right)\)
Số học sinh trúng tuyển chiếm 40% nên ta có
\(\left( {x + y} \right)40\% = 22 \Leftrightarrow x + y = 55\)
Trường A có số học sinh trúng tuyển là \(50\% x = \frac{1}{2}x\)
Trường B có số học sinh trúng tuyển là \(28\% y = \frac{7}{{25}}y\)
Cả hai trường có 22 học sinh trúng tuyển
\(\frac{1}{2}x + \frac{7}{{25}}y = 22 \Leftrightarrow 25x + 14y = 1100\)
Hệ phương trình \(\left\{ \begin{array}{l}x + y = 55\\25x + 14y = 1100\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 30\\y = 25\end{array} \right.\)
Lời giải
\(1.\,A = \frac{{\sqrt x }}{{\sqrt x - 2}} = \frac{{\sqrt 9 }}{{\sqrt 9 - 2}} = 3\)
\(2.\,\,B = \frac{{x - 4}}{{x\sqrt x - 8}} + \frac{{x + \sqrt x + 2}}{{{{\left( {\sqrt x + 1} \right)}^2} + 3}}\)
\( = \frac{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}{{\left( {\sqrt x - 2} \right)\left( {x + 2\sqrt x + 4} \right)}} + \frac{{x + \sqrt x + 2}}{{x + 2\sqrt x + 1 + 3}}\) \( = \frac{{\sqrt x + 2}}{{x + 2\sqrt x + 4}} + \frac{{x + \sqrt x + 2}}{{x + 2\sqrt x + 4}}\)
\( = \frac{{x + 2\sqrt x + 4}}{{x + 2\sqrt x + 4}} = 1\)
\(3.\,\,A \le B\) \( \Leftrightarrow \frac{{\sqrt x }}{{\sqrt x - 2}} \le 1\)
\( \Leftrightarrow \frac{{\sqrt x }}{{\sqrt x - 2}} - 1 \le 0\)
\( \Leftrightarrow \frac{2}{{\sqrt x - 2}} \le 0\)
\( \Leftrightarrow \sqrt x - 2 < 0\) \( \Leftrightarrow x < 4\)
\(0 \le x < 4\)Lời giải
Gọi x, y (quyển) lần lượt là số sách Toán và Ngữ văn
(x, y > 0)
Theo đề bài: \(x + y = 245\)
Số sách Toán đã khen thưởng:\(\frac{1}{2}x\)(quyển)
Số sách Ngữ văn đã khen thưởng:\(\frac{2}{3}y\)(quyển)
Mỗi bạn học sinh giỏi nhận được một quyển sách Toán và một quyển sách Ngữ văn nên số sách Toán và Ngữ văn đã khen thưởng bằng nhau: \(\frac{1}{2}x = \frac{2}{3}y \Leftrightarrow \frac{1}{2}x - \frac{2}{3}y = 0\)
Hệ phương trình: \(\left\{ \begin{array}{l}x + y = 245\\\frac{1}{2}x - \frac{2}{3}y = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 140\\y = 105\end{array} \right.\)
Đầu năm nhà trường mua 140 quyển sách Toán và 105 quyển sách Ngữ văn.Lời giải
\(1.\,\,\,\left\{ \begin{array}{l}\left| {x + 2} \right| + 4\sqrt {y - 1} = 5\\3\left| {x + 2} \right| - 2\sqrt {y - 1} = 1\end{array} \right.\,\,\,\,\,\,\,\,\,\left( {y \ge 1} \right)\)
\[ \Leftrightarrow \left\{ \begin{array}{l}\left| {x + 2} \right| + 4\sqrt {y - 1} = 5\\6\left| {x + 2} \right| - 4\sqrt {y - 1} = 2\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}\left| {x + 2} \right| + 4\sqrt {y - 1} = 5\\7\left| {x + 2} \right| = 7\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}\sqrt {y - 1} = 1\\\left| {x + 2} \right| = 1\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}y - 1 = 1\\x + 2 = \pm 1\end{array} \right.\]
Nghiệm: (– 1; 2), (– 3; 2).\(\begin{array}{l}2.\,\,{x^2} + \left( {3 - \sqrt {{x^2} + 2} } \right)x = 1 + 2\sqrt {{x^2} + 2} \\ \Leftrightarrow {x^2} + 3x - 1 = \left( {x + 2} \right)\sqrt {{x^2} + 2} \\ \Leftrightarrow {x^2} + 2 - \left( {x + 2} \right)\sqrt {{x^2} + 2} + 3\left( {x - 1} \right) = 0\end{array}\)
Đặt \(t = \sqrt {{x^2} + 2} \Rightarrow t \ge \sqrt 2 \)
Phương trình trở thành
\({t^2} - \left( {x + 2} \right)t + 3\left( {x - 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}t = 3\\t = x - 1\end{array} \right.\)
Suy ra \(\left[ \begin{array}{l}\sqrt {{x^2} + 2} = 3\\\sqrt {{x^2} + 2} = x - 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{x^2} = 7 \Leftrightarrow x = \pm \sqrt 7 \\\left\{ \begin{array}{l}x - 1 \ge 0\\2x = - 1\end{array} \right. \Leftrightarrow x = \frac{{ - 1}}{2}\,\,\left( {loai} \right)\end{array} \right.\)
Phương trình có nghiệm \(x = \pm \sqrt 7 \).Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.