CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

Ta có \(\widehat {EAD} = {90^ \circ }\) nên \(A,E,D\) cùng thuộc đường tròn đường kính \(ED\) (1)

\(\Delta AFB\) vuông tại \(F\)\(FE\) là đường trung tuyến nên \(FE = EB = EA\).

Do đó \(\Delta EBF\) cân tại \(E\). Suy ra \(\widehat {EBF} = \widehat {EFB}\).

\(\widehat {DFC} = \widehat {DCF}\) (\(\Delta DFC\) cân tại \(D\) ) và \(\widehat {EBF} + \widehat {DCF} = 90^\circ \).

Suy ra \(\widehat {EFB} + \widehat {DFC} = 90^\circ \) hay \(\widehat {EFD} = 90^\circ \).

Do đó \(E,F,D\) cùng thuộc đường tròn đường kính \(ED\) (2)

Từ (1) và (2) suy ra \(A,E,F,D\) cùng thuộc một đường tròn đường kính \(ED\).

Lời giải

Ta có: \(\sqrt 4 = 2\); \(\sqrt {{3^2}} = 3\); \({(\sqrt 7 )^2} = 7\)

Suy ra: \(S = 6\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP