Tháng thứ nhất, hai tổ công nhân \(A\) và \(B\) của một xưởng may sản xuất được \(900\) áo sơ mi. Tháng thứ hai, tổ \(A\) sản xuất vượt mức \(25\% \) và tổ \(B\) vượt mức \(20\% \) so với tháng thứ nhất do đó cả hai tổ sản xuất được \(1\;100\) áo sơ mi. Hỏi tháng thứ nhất, mỗi tổ công nhân sản xuất được bao nhiêu áo sơ mi ?
Quảng cáo
Trả lời:
|
Gọi \(x,\;y\) lần lượt là số áo sơ mi mà tổ \(A\) và tổ \(B\) sản xuất được trong tháng thứ nhất \(\left( {x,\;y \in {\mathbb{N}^*}} \right)\). |
|
Ta có: \(x + y = 900\) |
|
Số áo sơ mi hai tổ sản xuất được trong tháng thứ hai nhiều hơn tháng đầu là: \(1\;100 - 900 = 200\) nên \(0,25.x + 0,2.y = 200\), |
|
Ta có hệ phương trình: \(\left\{ \begin{array}{l}x + y = 900\\0,25.x + 0,2.y = 200\end{array} \right.\). Giải hệ phương trình ta được: \(\left\{ \begin{array}{l}x = 400\\y = 500\end{array} \right.\) Vậy tháng thứ nhất tổ \(A\) sản xuất được \(400\) (áo sơ mi) và tổ \(B\) sản xuất được \(500\) (áo sơ mi) |
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
|
Xét phương trình \(2{x^2} - 10x + 3 = 0\) có \(\Delta ' = 25 - 6 = 19 > 0\) nên phương trình có hai nghiệm phân biệt \({x_1},\;{x_2}\). Theo định lý Viète ta có \(\left\{ \begin{array}{l}{x_1} + {x_2} = 5\\{x_1}.{x_2} = \frac{3}{2}\end{array} \right.\). Suy ra phương trình có hai nghiệm dương. |
|
Ta có: \(\sqrt {24{x_1} - 5} = \sqrt {2\left( {10{x_1} - 3} \right) + 4{x_1} + 1} = \sqrt {4x_1^2 + 4{x_1} + 1} \) \( = \sqrt {{{\left( {2{x_1} + 1} \right)}^2}} = \left| {2{x_1} + 1} \right| = 2{x_1} + 1\) Suy ra \(\sqrt {24{x_1} - 5} + 2{x_2} + 2025 = 2{x_1} + 1 + 2{x_2} + 2026\) \( = 2\left( {{x_1} + {x_2}} \right) + 2027 = 2037\) |
|
Ta có: \(25 - 2{x_1} - 8{x_2} = 25 - \left[ {5\left( {{x_1} + {x_2}} \right) - 3\left( {{x_1} - {x_2}} \right)} \right] = 25 - \left( {25 - 3\sqrt {{{\left( {{x_1} - {x_2}} \right)}^2}} } \right)\) \( = 3\sqrt {{{\left( {{x_1} + {x_2}} \right)}^2} - 4{x_1}.{x_2}} = 3\sqrt {25 - 6} = 3\sqrt {19} \) Vậy \(T = \frac{{2037}}{{3\sqrt {19} }} = \frac{{679\sqrt {19} }}{{19}}\) |
Lời giải
Gọi biến cố \(A\): “bạn Hải lấy được thẻ ghi số không chia hết cho \(5\)”.
Có \(10\) kết quả thuận lợi cho biến cố \(A\) là: \(1;\;2;\;3;\;4;\;6;\;7;\;8;\;9;\;11;\;12\).
Vậy xác suất của biến cố \(A\) là \(P\left( A \right) = \frac{{10}}{{12}} = \frac{5}{6}\)Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
