Câu hỏi:

13/01/2026 16 Lưu

Cho đường tròn \(\left( {O;3cm} \right)\) và một điểm \(M\)nằm ngoài đường tròn sao cho \[OM = 6cm\]. Từ \(M\) vẽ các tiếp tuyến \(MA,MB\) của đường tròn \(\left( O \right)\), với \(A,B\) là các tiếp điểm; \(MO\) cắt đường tròn \(\left( O \right)\)tại hai điểm \(C\)\(D\) (\(C\) thuộc cung nhỏ \(AB\))
Media VietJack

a)     Tứ giác \(CADB\) là tứ giác nội tiếp.
Đúng
Sai
b)     \(OB = 3cm\)
Đúng
Sai
c)     \(\widehat {ADB} = 45^\circ \)
Đúng
Sai
d)     Diện tích của hình giới hạn bới hai tiếp tuyến \(MA,MB\) và cung nhỏ \(AB\) (phần tô đạm trong hình vẽ) bằng \(3\left( {3\sqrt 3  - \pi } \right)c{m^2}\).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Vì các điểm \(A,B,C,D\) cùng nằm trên đường tròn nên tứ giác \(CADB\)  là tứ giác nội tiếp. ĐÚNG

b) Vì \(B\)nằm trên đường tròn nên \(OB = 3cm\). ĐÚNG

c) Tam giác \(MAO\) vuông tại \(A\), đường trung tuyến \(AC\)(do \(MC = 3 = \frac{1}{2}MO\)) nên \(AC = \frac{1}{2}MO = 3cm\).

Suy ra tam giác \(AOC\) đều. do đó \(\widehat {AOC} = 60^\circ \). Suy ra \(\widehat {AOB} = 120^\circ \) (tính chất hai tiếp tuyến cắt nhau)

Suy ra \[\widehat {ADB} = \frac{1}{2}\widehat {AOB} = 60^\circ \]. SAI

d)  Tam giác \(ADC\) vuông tại \(A\) (góc nội tiếp \(A\) chắn nửa đường tròn). Nên \(DC = CD.\cos \widehat {ADC} = 6.\frac{{\sqrt 3 }}{2} = 3\sqrt 3 cm\).

Tam giác \(ABD\) cân tại \[{\rm{D}}\] có \[\widehat D = 60^\circ \] nên tam giác đều. Do đó đường chéo \(AB = AD = 3\sqrt 3 cm\)

Diện tích tứ giác \(MAOB\) là: \(\frac{1}{2}.3\sqrt 3 .6 = 9\sqrt 3 \left( {c{m^2}} \right)\).

Diện tích hình quạt \(OAB\)là: \(\frac{{\pi .9.120^\circ }}{{360^\circ }} = 3\pi \) \((c{m^2})\)

Vậy diện tích của hình giới hạn bới hai tiếp tuyến \(MA,MB\) và cung nhỏ \(AB\) (phần tô đạm trong hình vẽ) bằng \(9\sqrt 3  - 3\pi  = 3\left( {3\sqrt 3  - \pi } \right)\left( {c{m^2}} \right)\) ĐÚNG

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(64\)                         
B. \(8\).                                        .
C.\(4\).                                        
D.\( - 4\)

Lời giải

Chọn C

Lời giải

Media VietJack

Ta có: \(BH = 18.\sin 18^\circ \left( m \right)\); \(CH = 18.\cos 18^\circ \); \(AH = AB + BH = 24 + 18.\sin 18^\circ \)

Áp dụng định lý Pythagore cho tam giác \(AHC\) là: \(A{C^2} = A{H^2} + C{H^2}\)

Chiều dài dây cáp dài hơn là gần bằng \(31,5m\).

Câu 3

A. \[12\]cm.                    
B. \[\frac{{160}}{3}\]cm.     
C. \(32\)cm.                                        
D. \(\frac{{100}}{3}\)cm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(4x < 4y\).                
B. \(x - y < 0\).                                       
C. \( - x >  - y\).                                        
D. \(x - 3 > y - 3\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP