Câu hỏi:

29/01/2026 8 Lưu

Cho nửa đường tròn (O) đường kính AB và dây AC căng cung AC có số đo bằng 60o.

a) So sánh các góc của ∆ABC;

b) Gọi M và N lần lượt là điểm chính giữa của các cung AC và BC. Hai dây AN và BM cắt nhau tại điểm I. Chứng minh rằng CI là tia phân giác của góc ACB.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho nửa đường tròn (O) đường kính AB và dây AC căng cung AC có số đo bằng 60o.  a) So sánh các góc của ∆ABC; (ảnh 1)

a.     Dùng định lí góc nội tiếp và hệ quả của nó để tính

Đáp số: \(\widehat A < \widehat B < \widehat C{\rm{     }}\left( {30^\circ  < 60^\circ  < 90^\circ } \right).\)

b.    Bạn hãy chứng minh các tia \(AN,BM\)là tia phân giác của các góc \(A\)và \(B\) suy ra tia \(CI\) là tia phân giác của góc \(C.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a. Cho đường tròn (O) đường kính AB, M là điểm chính giữa của một nửa đường tròn, C là điểm bất kì trên nửa đường tròn kia, CM cắt AB tại D. Vẽ dây AE vuông góc với CM tại F.  a) Chứng minh rằng tứ giác ACEM là hình thang cân. (ảnh 1)

a.   Ta có 

Suy ra  do các tam giác \(\Delta FAC\) và \(\Delta FEM\) vuông cân tại \(F,\) do đó \(AE = CM.\) Ta có \(\widehat {CAE} = \widehat {AEM}\left( { = 45^\circ } \right)\)

\( \Rightarrow AC\)//\(ME\), dẫn tới từ giác \(ACEM\) là hình thang cân.

b.    Ta có \(CH\)//\(OM \Rightarrow \widehat {HCM} = \widehat {OMC}.\)

Mặt khác, \(\widehat {OCM} = \widehat {OMC}\)

suy ra \(\widehat {HCM} = \widehat {OCM} \Rightarrow \)Tia \(CO\) là tia phân giác của góc \(HCO\).

c.      

\( \Rightarrow \frac{{CD}}{{MD}} = \frac{{CH}}{{MO}} = \frac{{DH}}{{DO}} \le 1 \Rightarrow CD \le MD\) hay \(CD \le \frac{1}{2}CM.\) Do đó \(CD \le \frac{1}{2}AE.\)

Lời giải

Cho tam giác \[ABC{\rm{ } (ảnh 1)

Mặt khác, \(\widehat {MAN} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn)
Mà \(AM\) là phân giác trong góc A, nên AN là phân giác ngoài góc A

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP